Выбрать главу

Подлинные законы спектрального преобразования света были открыты С. И. Вавиловым в результате длительного экспериментального и теоретического исследования энергетики люминесцентных процессов. Они являются теоретической основой не только для науки о люминесценции, но и для ее технических приложений.

Большая серия работ С. И. Вавилова посвящена изучению поляризованной люминесценции. При освещении люминесцентного раствора линейно поляризованным светом свет люминесценции оказывается частично поляризованным. Изучение этого явления С. И. Вавиловым вместе с его учениками В. Л. Левшиным и членом-корреспондентом АН СССР П. П. Феофиловым проложило новые пути к выявлению природы и свойств элементарных излучателей в сложных молекулах. Исследуя у различных веществ графики зависимости степени поляризации люминесценции от длины волны возбуждающего света (Вавилов назвал их «спектрами поляризации»), можно установить, какие группы атомов в сложных молекулах этих веществ испускают или поглощают свет определенных длин волн. Благодаря этому можно получить ценные сведения о структуре сложных молекул.

Изучение тушения люминесценции растворов, произведенное С. И. Вавиловым и его учениками, привело к открытию нового вида передачи энергии в веществе — миграции энергии. При миграции энергия переносится без рассеяния на большие (сравнительно с размерами атомов и молекул) расстояния в результате особого рода взаимодействия между соседними атомами вещества. Этот вид распространения энергии играет огромную роль в концентрированных растворах органических красителей, в кристаллах, белковом веществе и разнообразных биохимических процессах.

В последние десятилетия люминесценция широко используется в различных областях науки и техники: в радиолокации и телевидении, в медицине, химии, биологии и минералогии, в металлургической промышленности — повсюду она помогает решению многочисленных практических задач. На основе люминесценции разработаны новые методы химического и сортового анализа различных веществ — так называемый люминесцентный анализ. В развитии этих практических применений люминесценции большая заслуга принадлежит С. И. Вавилову. Но особенно большое значение имеют его работы по созданию люминесцентных источников света, открывших новый этап в истории светотехники.

Электрические лампочки накаливания — основной источник света в наши дни — имеют очень крупные недостатки. Их коэффициент полезного действия не превышает 3 %. Более 90 % энергии теряется ими на создание невидимого инфракрасного излучения. Спектральный состав видимого света у этих ламп значительно отличается от солнечного света, к которому наиболее приспособлен человеческий глаз. Температура накала вольфрамовой нити в лампе 2200–2300°. Для получения света, близкого к солнечному, и увеличения светоотдачи пришлось бы поднять ее до 6000°. Однако еще задолго до этого нить лампочки расплавится или распылится.

Недостатки электрических лампочек накаливания побуждают ученых искать новые, более экономичные и удобные источники света. Такими источниками и оказались люминесцентные лампы. Люминесцентные вещества являются световыми трансформаторами. Они могут превращать один вид света в другой, например невидимые ультрафиолетовые, т. е. бесполезные в светотехническом отношении лучи, в видимые, или однородный свет — в широкие спектральные полосы самого различного состава. Трансформация света лежит в основе всех люминесцентных ламп.

С. И. Вавилов первым предложил использовать мощное ультрафиолетовое излучение ртутных ламп для получения видимого света с помощью люминесцентных веществ. Идя по этому пути, он создал люминесцентные «лампы дневного света».

Основной частью люминесцентных ламп Вавилова является газоразрядная трубка, заполненная парами ртути при низком давлении. Электроны, проходя через трубку при разряде, возбуждают ультрафиолетовое излучение ртути. Если наблюдать разряд через прозрачные стенки трубки, то можно заметить, что внутренность ее светится слабым голубым светом. Основная доля излучения ртути сосредоточена в ультрафиолетовой области. Для преобразования ее в видимый свет на внутреннюю стенку трубки наносят слой «светового трансформатора» — кристаллического люминесцентного порошка. Применяя различные порошки, можно получить свет любого цвета. Наибольший практический интерес представляют порошки, свечение которых близко к дневному рассеянному солнечному свету (например, дневному свету при облачном небе). Коэффициент полезного действия и средний срок службы таких ламп значительно больше обычных.

Люминесцентные лампы уже получили широкое распространение. Ими освещают сортировочные и колориметрические цехи текстильных фабрик, которые ранее работали всего по нескольку часов в день при дневном освещении. Они создают превосходные условия для освещения музеев и картинных галерей; благодаря полной взрывобезопасности по отношению к рудничным газам они успешно применяются в наших шахтах. Ими освещены многие станции Московского метрополитена, магазины, учреждения и т. д.

БЫСТРЕЕ СВЕТА

Прекрасным примером практической важности определения люминесценции, данного С. И. Вавиловым, является замечательное открытие эффекта «сверхсветового» электрона. Желая изучить люминесценцию растворов, возникающую под действием отличных от света источников возбуждения, С. И. Вавилов предложил в 1934 г. своему аспиранту П. А. Черенкову (ныне члену-корреспонденту АН СССР) исследовать люминесценцию растворов ураниловых солей, возбуждаемую γ-излучением радиоактивных веществ.

Долгие часы проводил П. А. Черенков в абсолютной темноте, так как свет, испускаемый раствором, был чрезвычайна слабым. Неожиданно ему удалось обнаружить, что, помимо хорошо известного свечения уранила, в растворах возникает слабое видимое синее свечение. Это свечение было настолько слабым, что, заметив его, большинство экспериментаторов не придало бы ему никакого значения. Ведь его возникновение так легко было объяснить побочными эффектами, наличием примесей и т. п. Но удивительно тонкое физическое чутье подсказало С. И. Вавилову и П. А. Черенкову, что здесь что-то не так.

Огромное различие в энергиях между поглощаемым γ-излучением и испускаемым синим светом, казалось, с несомненностью свидетельствовало о том, что это свечение является люминесценцией, вызываемой какими-нибудь побочными причинами. Однако исследовав, как долго сохраняется это свечение после прекращения возбуждения, и установив, что длительность его близка к 10−15 сек, С. И. Вавилов сразу же пришел к выводу, что это не люминесценция, а совершенно новое оптическое явление.

Дальнейшее исследование свойств этого свечения, произведенное П. А. Черенковым, подтвердило правильность заключения С. И. Вавилова. Оказалось, что подобное синее свечение можно наблюдать не только в растворах ураниловых солей, но и в любой прозрачной жидкости (воде, глицерине, серной, кислоте и т. д.) и даже в прозрачных твердых телах, облучаемых узким параллельным пучком γ-лучей. Интенсивность свечения при одинаковых условиях возбуждения практически постоянна у всех этих веществ. Энергия в спектре синего свечения возрастает в сторону коротких волн. Излучение поляризовано так, что направление электрического вектора световых колебаний совпадает с направлением распространения пучка γ-лучей. Свечение распространяется только вперед, в виде конуса, ось которого совпадает с пучком γ-лучей, а интенсивность свечения убывает по направлению к оси.

В первом же сообщении об этом новом свечении С. И. Вавилов и П. А. Черенков правильно указали на то, что оно возникает в результате торможения быстрых электронов, выбиваемых γ-лучами из молекул облучаемого вещества. Это предположение было проверено следующим образом: так как магнитное поле отклоняет электроны, то свечение, если оно возникает при торможении электронов, должно отклоняться магнитным полем. И действительно, при наложении магнитного поля свечение отклонялось в соответствующую сторону.