Выбрать главу
На повестке дня — биороботы

Ученые также не оставляют попыток видоизменить биологические мышцы, нарастить мышечную массу животных и людей с помощью блокировки особого белка миостатина. Блокирование выработки этого белка приводит к резкому увеличению мышечной массы без соответствующего роста жировой ткани.

Эксперименты на мышах показали рост массы тела за счет роста массы мышц в 1,5 и более раз по сравнению с обычными особями. В настоящее время даже есть породы коров с мутантными генами, блокирующими выработку миостатина. Такие животные дают много мяса с низким содержанием жира. Кроме того, блокировка миостатина ускоряет регенерацию мышечной ткани, что может помочь при обширных повреждениях мышц, например, в результате ранения.

У людей мутантные гены, блокирующие выработку миостатина, — очень редкое явление. Поэтому в течение многих лет ученые искали средства управлять уровнем миостатина для того, чтобы была возможность регулировать рост мышц. Такое лекарство пригодилось бы, например, для лечения возрастных изменений. Ведь старея, люди начинают терять мышечную массу, сами мышцы становятся слабее, а все тело заплывает жиром.

Так выглядят под микроскопом спиральные мышцы из ванадия.

Определенные результаты в этой области уже есть. Существенного успеха в разработке технологии блокирования миостатина добились ученые Дэвид Глас и Эстель Трайфилиф из фармацевтической компании Novartis. Они разработали новое соединение BYM338, которое предотвращает атрофию мышц и способствует росту мышечной массы. Оно воздействует на рецептор миостатин/активин тип II (ActRII), который управляет ростом только скелетных мышц. Таким образом, теперь ученые могут регулировать рост мышечной массы без грубого вмешательства в другие процессы, протекающие в организме.

Пока новые технологии блокирования миостатина готовятся к клиническим испытаниям. Ученые надеются, что новая технология позволит не только наращивать мышцы по желанию и медицинским показаниям, но и предотвратить тяжелые осложнения ряда заболеваний. Ну и, конечно, новая методика наращивания мышечной ткани вполне может пригодиться при создании новых поколений биороботов.

ЗА СТРАНИЦАМИ УЧЕБНИКА

Как взвесить молекулу?

Мы с моим другом Андреем задумались: а как можно взвесить молекулы? Ведь ученым для своих расчетов и опытов необходимо знать, сколько они весят.

Антон Квашнин, г. Тула

Ну, сделать это очень просто. Надо взять лабораторные или аптекарские весы и на одну чашку положить молекулу, а на другие — атомы, которые мы будем использовать в качестве гирек.

Конечно, это шутка. На самом деле взвешивают сверхмалые объекты вовсе не так. Устройства, которым можно доверить столь деликатную задачу, и на весы-то, в общем, совсем не похожи. Потому как нет таких гирь и пружин, которые бы могли почувствовать разницу в массе той или иной молекулы. А потому решается подобная задача следующим образом. Представьте себе картину. Девочка Маша качается на качелях. Она раскачивает качели ритмичными толчками с постоянной силой — старается, как может. В результате качели имеют постоянную амплитуду отклонений и частоту качаний.

В какой-то момент к Маше на качели подсаживается соседский мальчик Миша. Он намного тяжелее Маши, но еще и ленив. А потому не раскачивает качели, а просто сидит на них. Раскачивает одна Маша. В итоге, как вы сами понимаете, амплитуда и частота качаний существенно изменятся. Причем степень изменения будет пропорциональна массе Миши.

Именно на таком принципе основана работа кварцевых микровесов. Кварцевая пластина, установленная на дне герметичной камеры, колеблется в поперечном направлении. Колебания эти возбуждаются электродами по краям пластины, к которым прикладывается переменное напряжение (кварц — пьезоэлектрик). Параметры колебаний регистрируют специальные датчики. Если на пластину осядут молекулы, то параметры колебаний изменятся. Существуют формулы, которые позволяют пересчитать изменение частоты в изменение массы.

Сам принцип измерения массы с помощью колеблющейся системы далеко не нов. Идея использовать в качестве весов кантилевер — кварцевую пластину, закрепленную одним концом, словно доска трамплина для прыжков в воду, родилась в конце 70-х годов ХХ века, почти одновременно с созданием самого атомно-силового микроскопа. С тех пор кварцевые микровесы (в английской литературе QCM — quarts crystal microbalances) прижились, и сегодня существует множество их разновидностей. Использование относительно крупной пластины в качестве подложки дает возможность не только определять массу молекул, но и исследовать процессы их слипания, сорбции-десорбции, а также изучать свойства пленок, регистрировать изменения структуры гелей и многое другое.