Выбрать главу

Наши специалисты из фирмы НТ-МДТ разработали устройство, которое интегрировано со сканирующим зондовым микроскопом. Таким образом, исследователь имеет возможность не только зарегистрировать изменение массы на подложке, но и сразу же увидеть, чем именно это изменение вызвано.

Разновидность подобных микровесов создали недавно физики из Калифорнийского технологического института (Калтеха). Ими сконструировано первое наноустройство, способное взвешивать отдельные биомолекулы. По словам Майкла Роукеса, профессора прикладной физики и биоинженерии из Калтеха и одновременно директора недавно основанного Института нанотехнологий, возглавляемой им группе специалистов удалось создать принципиально новый измерительный наноразмерный прибор для применения в медицинских и научных исследованиях.

Устройство называется «наноэлектромеханический резонатор» и представляет собой крошечный камертон длиной порядка микрона и шириной около 100 нанометров. Если опять-таки приложить к нему переменное электрическое напряжение, он начинает колебаться со своей собственной, строго определенной частотой. Правда, услышать издаваемый им звук не удастся, поскольку частота колебаний лежит уже в микроволновой области.

Но это неважно. Главное, что исследователи собрали электросхему, которая непрерывно возбуждает и контролирует частоту вибрирующей полоски. Периодически в герметической камере, куда помещен камертон, срабатывает заслонка, и на пластинку обрушивается пучок атомов или молекул. А поскольку пластинка предварительно охлаждалась до очень низкой температуры, атомы или молекулы тут же примерзают к камертону, неизбежно понижая его частоту.

Причем изменение частоты пропорционально массе молекул. Остается их пересчитать под электронным микроскопом и узнать, сколько весит каждая молекула.

Еще одна аналогичная установка создана в Массачусетском технологическом институте (МТИ). Она позволяет взвешивать наночастицы с точностью до одного аттограмма (10–18 г).

Пару лет тому назад Скотт Маналис, сотрудник МТИ, разработал метод взвешивания отдельных живых клеток в подвешенном микроканальном резонаторе (ПМР), измеряющем массу объекта при его прохождении или протекании через узкий канал. Изначально такое устройство представляло собой микроканал в крохотном кремниевом кронштейне. Когда по каналу проходила клетка, кронштейн менял частоту своих вибраций. А поскольку он делал это в маленькой вакуумной полости, изменение частоты не так уж сложно было измерить с высокой точностью и пересчитать в доли грамма.

Экзосомы играют важную роль в организме человека. Но чтобы понять, какую именно, неплохо бы иметь точные средства взвешивания столь малых объектов…

Затем этот кронштейн еще уменьшили, доведя его длину до 22,5 мкм, а канал и вовсе имел всего 1 мкм в ширину и 0,4 мкм в глубину. Одновременно источник энергии колебаний заменили с электростатического на пьезокристаллический, имеющий большую собственную амплитуду вибраций и меньший уровень шумов. В итоге сейчас размеры измеряющей системы уменьшены в несколько раз, за счет чего погрешность измерения составляет 0,85 аттограмма, снизившись в 30 раз по сравнению с предшествующим устройством.

«Теперь мы в состоянии взвешивать мелкие вирусы и большинство искусственно созданных на сегодня наночастиц, используемых в молекулярной медицине», — подчеркнул Селим Олкум, один из авторов нынешней разработки. — Наша система весьма производительна — на взвешивание 30 тысяч наночастиц у нее ушло 1,5 часа. И у нас еще есть возможность для совершенствования как методики измерений, так и конструкции самого устройства».

Для демонстрации возможностей прибора исследователи взвешивали наночастицы, сделанные из фрагментов ДНК, прикрепленных к золотым наносферам. При этом удалось установить, какую долю массы составляет золото, а какую — ДНК. Но практическое использование «весов» видится куда более широким.

М. МАКСИМОВ

УДИВИТЕЛЬНО, НО ФАКТ!

Невозможная химия началась с обычной соли

Школьные учебники по химии нужно переписывать. К такому выводу пришел российский ученый Артем Оганов со своими коллегами, изучая кристаллические структуры из натрия и хлора. С помощью метода USPEX, разработанного Огановым, исследователям удалось синтезировать совершенно невозможные, с точки зрения правил классической химии, соединения натрия и хлора — NaCl3 и NaCl7, Na3Cl, Na3Cl2, Na2Cl. Оказалось, что они не только существуют, но и вполне стабильны при определенных условиях окружающей среды.