Выбрать главу

§ 7. Фильтры

В предыдущем параграфе мы видели, что бесконечная лест­ничная сеть (см. фиг. 22.20) непрерывно поглощает энергию, если эта энергия подводится с частотой, которая ниже некоторого критического значения Ц4/LC, называемого граничной часто­той w0. У нас возникла мысль, что этот эффект можно понять, основываясь на представлении о непрерывном переносе энергии вдоль линии. С другой стороны, на высоких частотах (при w >w0) непрерывного поглощения энергии не бывает; тогда следует ожидать, что токи, видимо, не смогут «проникнуть» далеко вдоль линии. Поглядим, верны ли эти представления.

Пусть передний конец лестницы соединен с каким-то гене­ратором переменного тока, и нас интересует, как выглядит напряжение, скажем, в 754-м звене лестницы. Поскольку сеть бесконечна, при переходе от одного звена к другому происходит всегда одно и то же; так что можно просто посмотреть, что слу­чается, когда мы переходим от n-го звена к (n+1)-му. Токи In и напряжения Vn мы определим так, как показано на фиг. 22.21,а.

Фиг. 22.21. Нахождение фактора распространения лестницы.

Напряжение Vn+1можно получить из Vn, если вспомнить, что остаток лестницы (за n-м звеном) всегда можно заменить ее характеристическим импедансом z0; и тогда достаточно проана­лизировать только схему фиг. 22.21, б. Мы прежде всего заме­чаем, что каждое Vn, поскольку это напряжение на зажимах сопротивлеиия z0, должно быть равно Inz0. Кроме того, разность между Vnи Vn+lравна просто Inz1:

Получается отношение

которое можно назвать фактором распространения для одного звена лестницы; обозначим его a. Для всех звеньев

(22.29)

и напряжение за nзвеном равно

Теперь ничего не стоит найти напряжение за 754-м звеном; оно просто равно произведению e на 754-ю степень a.

Как выглядит a для лестницы L—С на фиг. 22.20, а? Взяв z0 из уравнения (22.27) и г1 =iwL, получим

Если частота на входе ниже граничной частоты w0=Ц4/LС, то корень — число действительное, и модули комплексных чисел в числителе и знаменателе одинаковы. Поэтому значение a по модулю равно единице; можно написать

а это означает, что величина (модуль) напряжения в каждом звене одна и та же; меняется только фаза. Она меняется на число d; оно на самом деле отрицательно и представляет собой «задерж­ку» напряжения по мере того, как последнее проходит по сети. А для частот выше граничной частоты w0 лучше вынести в числителе и знаменателе (22.31) множитель i и переписать его в

(22.32)

Теперь фактор распространения a — число действительное, притом меньшее единицы. Это означает, что напряжение в неко­тором звене всегда меньше напряжения в предыдущем звене; множитель пропорциональности равен а. При частотах выше w0 напряжение быстро спадает по мере движения вдоль сети. Кри­вая модуля a как функции частоты похожа на график, приведен­ный на фиг. 22.22.

Мы видим, что поведение а как выше, так и ниже w0 согласу­ется с нашим представлением о том, что сеть передает энергию при w<w0 и задерживает ее при w>w0. Говорят, что сеть «про­пускает» низкие частоты и «отбрасывает», или «отфильтровыва­ет», высокие. Всякая сеть, устроенная так, чтобы ее характе­ристики менялись указанным образом, называется «фильтром». Мы проанализировали «фильтр низкого пропускания», или «низ­ких частот».

Вас может удивить — к чему все это обсуждение бесконечных сетей, если на самом деле они невозможны? Но вся хитрость в том и заключается, что те же характеристики вы обнаружите и в конечной сети, если заключите ее импедансом, совпадающим с характеристическим импедансом z0. Практически, конечно, не­возможно точно воспроизвести характеристический импеданс несколькими простыми элементами, такими, как R, L и С. Но в некоторой полосе частот нередко этого можно добиться в хоро­шем приближении. Этим способом можно сделать конечную фильтрующую сеть со свойствами, очень близкими к тем, кото­рые проявляются в бесконечном фильтре. Скажем, лестница L—С будет во многом вести себя так, как было описано, если на конце ее помещено чистое сопротивление RL/C.