Говоря о конвекции в атмосфере, необходимо учитывать, что здесь тепло переносится главным образом водяным паром: тепловая энергия, затраченная на испарение воды, выделяется там, где этот пар, перенесенный воздушными течениями, превратится обратно в жидкость — то есть выпадет в виде осадков. Атмосфера каждого из полушарий распадается на три широтных сегмента[42] — конвективные ячейки: экваториальная, умеренных широт и приполярная. В каждой из ячеек существует относительно замкнутая воздушная циркуляция, причем направления циркуляции в граничащих между собой ячейках противоположны ("по часовой стрелке" — "против" — опять "по") — в точности, как в цепи шестеренок (рисунок 34, а). В одной половине ячейки доминируют восходящие токи, во второй — нисходящие; соответственно, влага, испаряющаяся в первой половине, выпадает главным образом во второй — и при этом происходит разгрузка теплоты парообразования. Например, в экваториальной ячейке Северного полушария ток направлен от севера к югу, так что в южной ее половине возникают влажные тропические леса, а в северной — засушливые саванны; в ячейке же умеренных широт, где направление тока обратное, пустыни возникают на юге, а субтропические и широколиственные леса — на севере. Другим фактором атмосферной конвекции (главным образом широтным) являются муссоны — сезонные ветры постоянного направления, дующие с океана на континент или обратно; с муссонами связано, среди прочего, чередование сухого сезона и сезона дождей в тропических широтах, где температура весь год постоянна.
Так вот, возвращаясь к крио- и термоэрам. Ныне (как, видимо, и вообще в криоэрах) основной приток тепла в высокие широты осуществляется мощными теплыми течениями вроде Гольфстрима. При этом возникает температурная аномалия: океан в районе 60-х широт существенно (почти на 20 градусов!) теплее, чем следовало бы из соображений геометрии планеты. Однако это обстоятельство имеет и оборотную сторону: на материке развивается мощный зимний антициклон (область высокого давления) с температурами на 20 градусов ниже, чем следовало бы. Из антициклона "вытекает" холодный сухой воздух, тогда как встречный ток теплого воздуха лишь "приподнимает верхушку" антициклона — то есть тепловая энергия расходуется на механическую работу против силы тяжести. В итоге континентальные антициклоны работают как мощные всепланетные холодильники (влияние Сибирского антициклона ощущается далеко на юге и приводит к холодным зимам не только в Приморье, но и в Китае, и даже во Вьетнаме), которые ослабляют муссоны и не дают им продвинуться сколь-нибудь далеко в полярном направлении. Теплые воды отводятся из эваториальной зоны столь быстро, что практически не успевают осолониться за счет испарения, так что галинная составляющая океанской циркуляции по сравнению с термической пренебрежимо мала; в атмосфере существуют упомянутые выше три ячейки. Ситуация может быть кратко охаректеризована так: "Водный теплоперенос — теплые океаны — холодные материки".
В термоэры (в частности, в мезозое) ситуация, судя по всему, была принципиально иной. А.Г. Пономаренко (1996), предложивший соответствующую модель, обращает внимание на два обстоятельства, кажущиеся необъяснимыми с нынешних позиций. Во-первых, приполярные области были очень теплыми (исходя из состава их фауны и флоры), что требует куда более интенсивного, чем ныне, теплопереноса от экватора к полюсу. Во-вторых, в тогдашней экваториальной зоне (где ныне находятся дождевые тропические леса) растительность была явно ксерофильной и возникали эвапориты — отложения, являющиеся показателем аридных (пустынных) условий.
При отсутствии полярных шапок температура океанической воды не падает до 4 °, когда ее плотность максимальна, и не происходит полного опускания поверхностных вод. Компенсирующие такое погружение мощные теплые течения не возникают; теплая вода из экваториальной зоны практически не отводится, она осолоняется за счет испарения и погружается на дно — галинная циркуляция здесь резко доминирует над термической. Поверхностные слои океанов в умеренных широтах относительно холодны, и температурного контраста между океанами и материками не возникает; не возникает и зимнего антициклона, так что ничто теперь не мешает муссону переносить теплый воздух и водяной пар чуть ли не до самого полюса.
Если в криоэрах в каждом из полушарий существуют три атмосферные ячейки и единственная (термическая) океанская, то в термоэрах ситуация, похоже, была как бы зеркальной. В атмосфере существует единственная ячейка, в которой происходит прямой перенос тепла и влаги из приэкваториальных областей в приполярные; это хорошо объясняет упомянутый выше парадокс с располагающимся на экваторе аридным поясом[43]. В гидросфере, напротив, существуют две ячейки, причем в экваториальной ячейке циркуляция идет по галинному типу, а в высокоширотной — по термическому. В зоне соприкосновения гидросферных ячеек, где водные массы движутся друг навстречу другу, должны возникать апвелинги[44]; подтверждением тому служит распространение по этой предполагаемой границе обогащенных органикой черносланцевых формаций, которые отлагаются в избыточно-продуктивных морских акваториях.
43
Интересно, что подобную схему атмосферной циркуляции (с одной ячейкой) предполагал еще в начале XVIII века — правда, для современности — физик Дж. Гадлей, однако позже выяснилось, что атмосфера Земли организована иначе, с тремя ячейками, и о модели Гадлея забыли.
44
Апвелинг — место подьема к поверхности океана глубинных вод. Последние всегда обогащены биогенами (прежде всего — фосфором), и потому в зонах апвелингов развиваются чрезвычайно высоко продуктивные морские сообщества, и море едва не кишит рыбой. Апвелинги, развивающиеся вдоль западных побережий Южной Америки и Южной Африки (там, где к этим материкам подходят рукава Циркумантарктического течения), служат главными районами морского рыболовства.