When approximate generalizations are joined by way of addition, we may deduce from the theory of probabilities laid down in a former chapter, in what manner each of them adds to the probability of a conclusion which has the warrant of them all.
If, on an average, two of every three As are Bs, and three of every four Cs are Bs, the probability that something which is both an A and a C is a B, will be more than two in three, or than three in four. Of every twelve things which are As, all except four are Bs by the supposition; and if the whole twelve, and consequently those four, have the characters of C likewise, three of these will be Bs on that ground. Therefore, out of twelve which are both As and Cs, eleven are Bs. To state the argument in another way; a thing which is both an A and a C, but which is not a B, is found in only one of three sections of the class A, and in only one of four sections of the class C; but this fourth of C being spread over the whole of A indiscriminately, only one-third part of it (or one-twelfth of the whole number) belongs to the third section of A; therefore a thing which is not a B occurs only once, among twelve things which are both As and Cs. The argument would, in the language of the doctrine of chances, be thus expressed: the chance that an A is not a B is ⅓, the chance that a C is not a B is ¼; hence if the thing be both an A and a C, the chance is ⅓ of ¼ = ¹⁄₁₂.[196]
In this computation it is of course supposed that the probabilities arising from A and C are independent of each other. There must not be any such connection between A and C, that when a thing belongs to the one class it will therefore belong to the other, or even have a greater chance of doing so. Otherwise the not-Bs which are Cs may be, most or even all of them, identical with the not-Bs which are As; in which last case the probability arising from A and C together will be no greater than that arising from A alone.
When approximate generalizations are joined together in the other mode, that of deduction, the degree of probability of the inference, instead of increasing, diminishes at each step. From two such premises as Most A are B, Most B are C, we can not with certainty conclude that even a single A is C; for the whole of the portion of A which in any way falls under B, may perhaps be comprised in the exceptional part of it. Still, the two propositions in question afford an appreciable probability that any given A is C, provided the average on which the second proposition is grounded was taken fairly with reference to the first; provided the proposition, Most B are C, was arrived at in a manner leaving no suspicion that the probability arising from it is otherwise than fairly distributed over the section of B which belongs to A. For though the instances which are A may be all in the minority, they may, also, be all in the majority; and the one possibility is to be set against the other. On the whole, the probability arising from the two propositions taken together, will be correctly measured by the probability arising from the one, abated in the ratio of that arising from the other. If nine out of ten Swedes have light hair, and eight out of nine inhabitants of Stockholm are Swedes, the probability arising from these two propositions, that any given inhabitant of Stockholm is light-haired, will amount to eight in ten; though it is rigorously possible that the whole Swedish population of Stockholm might belong to that tenth section of the people of Sweden who are an exception to the rest.
If the premises are known to be true not of a bare majority, but of nearly the whole, of their respective subjects, we may go on joining one such proposition to another for several steps, before we reach a conclusion not presumably true even of a majority. The error of the conclusion will amount to the aggregate of the errors of all the premises. Let the proposition, most A are B, be true of nine in ten; Most B are C, of eight in nine; then not only will one A in ten not be C, because not B, but even of the nine-tenths which are B, only eight-ninths will be C; that is, the cases of A which are C will be only ⁸⁄₉ of ⁹⁄₁₀, or four-fifths. Let us now add Most C are D, and suppose this to be true of seven cases out of eight; the proportion of A which is D will be only ⅞ of ⁸⁄₉ of ⁹⁄₁₀, or ⁷⁄₁₀. Thus the probability progressively dwindles. The experience, however, on which our approximate generalizations are grounded, has so rarely been subjected to, or admits of, accurate numerical estimation, that we can not in general apply any measurement to the diminution of probability which takes place at each illation; but must be content with remembering that it does diminish at every step, and that unless the premises approach very nearly indeed to being universally true, the conclusion after a very few steps is worth nothing. A hearsay of a hearsay, or an argument from presumptive evidence depending not on immediate marks but on marks of marks, is worthless at a very few removes from the first stage.
§ 7. There are, however, two cases in which reasonings depending on approximate generalizations may be carried to any length we please with as much assurance, and are as strictly scientific, as if they were composed of universal laws of nature. But these cases are exceptions of the sort which are currently said to prove the rule. The approximate generalizations are as suitable, in the cases in question, for purposes of ratiocination, as if they were complete generalizations, because they are capable of being transformed into complete generalizations exactly equivalent.
First: If the approximate generalization is of the class in which our reason for stopping at the approximation is not the impossibility, but only the inconvenience, of going further; if we are cognizant of the character which distinguishes the cases that accord with the generalization from those which are exceptions to it; we may then substitute for the approximate proposition, a universal proposition with a proviso. The proposition, Most persons who have uncontrolled power employ it ill, is a generalization of this class, and may be transformed into the following: All persons who have uncontrolled power employ it ill, provided they are not persons of unusual strength of judgment and rectitude of purpose. The proposition, carrying the hypothesis or proviso with it, may then be dealt with no longer as an approximate, but as a universal proposition; and to whatever number of steps the reasoning may reach, the hypothesis, being carried forward to the conclusion, will exactly indicate how far that conclusion is from being applicable universally. If in the course of the argument other approximate generalizations are introduced, each of them being in like manner expressed as a universal proposition with a condition annexed, the sum of all the conditions will appear at the end as the sum of all the errors which affect the conclusion. Thus, to the proposition last cited, let us add the following: All absolute monarchs have uncontrolled power, unless their position is such that they need the active support of their subjects (as was the case with Queen Elizabeth, Frederick of Prussia, and others). Combining these two propositions, we can deduce from them a universal conclusion, which will be subject to both the hypotheses in the premises; All absolute monarchs employ their power ill, unless their position makes them need the active support of their subjects, or unless they are persons of unusual strength of judgment and rectitude of purpose. It is of no consequence how rapidly the errors in our premises accumulate, if we are able in this manner to record each error, and keep an account of the aggregate as it swells up.
196
The evaluation of the chances in this statement has been objected to by a mathematical friend. The correct mode, in his opinion, of setting out the possibilities is as follows. If the thing (let us call it T) which is both an A and a C, is a B, something is true which is only true twice in every thrice, and something else which is only true thrice in every four times. The first fact being true eight times in twelve, and the second being true six times in every eight, and consequently six times in those eight; both facts will be true only six times in twelve. On the other hand, if T, although it is both an A and a C, is not a B, something is true which is only true once in every thrice, and something else which is only true once in every four times. The former being true four times out of twelve, and the latter once in every four, and therefore once in those four; both are only true in one case out of twelve. So that T is a B six times in twelve, and T is not a B, only once: making the comparative probabilities, not eleven to one, as I had previously made them, but six to one.
In the last edition I accepted this reasoning as conclusive. More attentive consideration, however, has convinced me that it contains a fallacy.
The objector argues, that the fact of A’s being a B is true eight times in twelve, and the fact of C’s being a B six times in eight, and consequently six times in those eight; both facts, therefore, are true only six times in every twelve. That is, he concludes that because among As taken indiscriminately only eight out of twelve are Bs and the remaining four are not, it must equally hold that four out of twelve are not Bs when the twelve are taken from the select portion of As which are also Cs. And by this assumption he arrives at the strange result, that there are fewer Bs among things which are both As and Cs than there are among either As or Cs taken indiscriminately; so that a thing which has both chances of being a B, is less likely to be so than if it had only the one chance or only the other.
The objector (as has been acutely remarked by another correspondent) applies to the problem under consideration, a mode of calculation only suited to the reverse problem. Had the question been—If two of every three Bs are As and three out of every four Bs are Cs, how many Bs will be both As and Cs, his reasoning would have been correct. For the Bs that are both As and Cs must be fewer than either the Bs that are As or the Bs that are Cs, and to find their number we must abate either of these numbers in the ratio due to the other. But when the problem is to find, not how many Bs are both As and Cs, but how many things that are both As and Cs are Bs, it is evident that among these the proportion of Bs must be not less, but greater, than among things which are only A, or among things which are only B.
The true theory of the chances is best found by going back to the scientific grounds on which the proportions rest. The degree of frequency of a coincidence depends on, and is a measure of, the frequency, combined with the efficacy, of the causes in operation that are favorable to it. If out of every twelve As taken indiscriminately eight are Bs and four are not, it is implied that there are causes operating on A which tend to make it a B, and that these causes are sufficiently constant and sufficiently powerful to succeed in eight out of twelve cases, but fail in the remaining four. So if of twelve Cs, nine are Bs and three are not, there must be causes of the same tendency operating on C, which succeed in nine cases and fail in three. Now suppose twelve cases which are both As and Cs. The whole twelve are now under the operation of both sets of causes. One set is sufficient to prevail in eight of the twelve cases, the other in nine. The analysis of the cases shows that six of the twelve will be Bs through the operation of both sets of causes; two more in virtue of the causes operating on A; and three more through those operating on C, and that there will be only one case in which all the causes will be inoperative. The total number, therefore, which are Bs will be eleven in twelve, and the evaluation in the text is correct.