Выбрать главу

To ascertain whether, and in what, two phenomena resemble or differ, is not always, therefore, so easy a thing as it might at first appear. When the two can not be brought into juxtaposition, or not so that the observer is able to compare their several parts in detail, he must employ the indirect means of reasoning and general propositions. When we can not bring two straight lines together, to determine whether they are equal, we do it by the physical aid of a foot-rule applied first to one and then to the other, and the logical aid of the general proposition or formula, “Things which are equal to the same thing are equal to one another.” The comparison of two things through the intervention of a third thing, when their direct comparison is impossible, is the appropriate scientific process for ascertaining resemblances and dissimilarities, and is the sum total of what Logic has to teach on the subject.

An undue extension of this remark induced Locke to consider reasoning itself as nothing but the comparison of two ideas through the medium of a third, and knowledge as the perception of the agreement or disagreement of two ideas; doctrines which the Condillac school blindly adopted, without the qualifications and distinctions with which they were studiously guarded by their illustrious author. Where, indeed, the agreement or disagreement (otherwise called resemblance or dissimilarity) of any two things is the very matter to be determined, as is the case particularly in the sciences of quantity and extension; there, the process by which a solution, if not attainable by direct perception, must be indirectly sought, consists in comparing these two things through the medium of a third. But this is far from being true of all inquiries. The knowledge that bodies fall to the ground is not a perception of agreement or disagreement, but of a series of physical occurrences, a succession of sensations. Locke’s definitions of knowledge and of reasoning required to be limited to our knowledge of, and reasoning about, resemblances. Nor, even when thus restricted, are the propositions strictly correct; since the comparison is not made, as he represents, between the ideas of the two phenomena, but between the phenomena themselves. This mistake has been pointed out in an earlier part of our inquiry,[198] and we traced it to an imperfect conception of what takes place in mathematics, where very often the comparison is really made between the ideas, without any appeal to the outward senses; only, however, because in mathematics a comparison of the ideas is strictly equivalent to a comparison of the phenomena themselves. Where, as in the case of numbers, lines, and figures, our idea of an object is a complete picture of the object, so far as respects the matter in hand; we can, of course, learn from the picture, whatever could be learned from the object itself by mere contemplation of it as it exists at the particular instant when the picture is taken. No mere contemplation of gunpowder would ever teach us that a spark would make it explode, nor, consequently, would the contemplation of the idea of gunpowder do so; but the mere contemplation of a straight line shows that it can not inclose a space; accordingly the contemplation of the idea of it will show the same. What takes place in mathematics is thus no argument that the comparison is between the ideas only. It is always, either indirectly or directly, a comparison of the phenomena.

In cases in which we can not bring the phenomena to the test of direct inspection at all, or not in a manner sufficiently precise, but must judge of their resemblance by inference from other resemblances or dissimilarities more accessible to observation, we of course require, as in all cases of ratiocination, generalizations or formulæ applicable to the subject. We must reason from laws of nature; from the uniformities which are observable in the fact of likeness or unlikeness.

§ 3. Of these laws or uniformities, the most comprehensive are those supplied by mathematics; the axioms relating to equality, inequality, and proportionality, and the various theorems thereon founded. And these are the only Laws of Resemblance which require to be, or which can be, treated apart. It is true there are innumerable other theorems which affirm resemblances among phenomena; as that the angle of the reflection of light is equal to its angle of incidence (equality being merely exact resemblance in magnitude). Again, that the heavenly bodies describe equal areas in equal times; and that their periods of revolution are proportional (another species of resemblance) to the sesquiplicate powers of their distances from the centre of force. These and similar propositions affirm resemblances, of the same nature with those asserted in the theorems of mathematics; but the distinction is, that the propositions of mathematics are true of all phenomena whatever, or at least without distinction of origin; while the truths in question are affirmed only of special phenomena, which originate in a certain way; and the equalities, proportionalities, or other resemblances, which exist between such phenomena, must necessarily be either derived from, or identical with, the law of their origin—the law of causation on which they depend. The equality of the areas described in equal times by the planets, is derived from the laws of the causes; and, until its derivation was shown, it was an empirical law. The equality of the angles of reflection and incidence is identical with the law of the cause; for the cause is the incidence of a ray of light upon a reflecting surface, and the equality in question is the very law according to which that cause produces its effects. This class, therefore, of the uniformities of resemblance between phenomena, are inseparable, in fact and in thought, from the laws of the production of those phenomena; and the principles of induction applicable to them are no other than those of which we have treated in the preceding chapters of this Book.

It is otherwise with the truths of mathematics. The laws of equality and inequality between spaces, or between numbers, have no connection with laws of causation. That the angle of reflection is equal to the angle of incidence, is a statement of the mode of action of a particular cause; but that when two straight lines intersect each other the opposite angles are equal, is true of all such lines and angles, by whatever cause produced. That the squares of the periodic times of the planets are proportional to the cubes of their distances from the sun, is a uniformity derived from the laws of the causes (or forces) which produce the planetary motions; but that the square of any number is four times the square of half the number, is true independently of any cause. The only laws of resemblance, therefore, which we are called upon to consider independently of causation, belong to the province of mathematics.

§ 4. The same thing is evident with respect to the only one remaining of our five categories, Order in Place. The order in place, of the effects of a cause, is (like every thing else belonging to the effects) a consequence of the laws of that cause. The order in place, or, as we have termed it, the collocation, of the primeval causes, is (as well as their resemblance) in each instance an ultimate fact, in which no laws or uniformities are traceable. The only remaining general propositions respecting order in place, and the only ones which have nothing to do with causation, are some of the truths of geometry; laws through which we are able, from the order in place of certain points, lines, or spaces, to infer the order in place of others which are connected with the former in some known mode; quite independently of the particular nature of those points, lines, or spaces, in any other respect than position or magnitude, as well as independently of the physical cause from which in any particular case they happen to derive their origin.

вернуться

198

Supra, book i., chap. v., § 1, and book ii., chap, v., § 5.