Выбрать главу

So again of the First Law of Motion; that a body once moving will, if left to itself, continue to move uniformly in a straight line. An attempt is made to prove this law by saying, that if not, the body must deviate either to the right or to the left, and that there is no reason why it should do one more than the other. But who could know, antecedently to experience, whether there was a reason or not? Might it not be the nature of bodies, or of some particular bodies, to deviate toward the right? or if the supposition is preferred, toward the east, or south? It was long thought that bodies, terrestrial ones at least, had a natural tendency to deflect downward; and there is no shadow of any thing objectionable in the supposition, except that it is not true. The pretended proof of the law of motion is even more manifestly untenable than that of the law of inertia, for it is flagrantly inconsistent; it assumes that the continuance of motion in the direction first taken is more natural than deviation either to the right or to the left, but denies that one of these can possibly be more natural than the other. All these fancies of the possibility of knowing what is natural or not natural by any other means than experience, are, in truth, entirely futile. The real and only proof of the laws of motion, or of any other law of the universe, is experience; it is simply that no other suppositions explain or are consistent with the facts of universal nature.

Geometers have, in all ages, been open to the imputation of endeavoring to prove the most general facts of the outward world by sophistical reasoning, in order to avoid appeals to the senses. Archimedes, says Professor Playfair,[240] established some of the elementary propositions of statics by a process in which he “borrows no principle from experiment, but establishes his conclusion entirely by reasoning a priori. He assumes, indeed, that equal bodies, at the ends of the equal arms of a lever, will balance one another; and also that a cylinder or parallelopiped of homogeneous matter, will be balanced about its centre of magnitude. These, however, are not inferences from experience; they are, properly speaking, conclusions deduced from the principle of the Sufficient Reason.” And to this day there are few geometers who would not think it far more scientific to establish these or any other premises in this way, than to rest their evidence on that familiar experience which in the case in question might have been so safely appealed to.

§ 6. Another natural prejudice, of most extensive prevalence, and which had a great share in producing the errors fallen into by the ancients in their physical inquiries, was this: That the differences in nature must correspond to our received distinctions: that effects which we are accustomed, in popular language, to call by different names, and arrange in different classes, must be of different natures, and have different causes. This prejudice, so evidently of the same origin with those already treated of, marks more especially the earliest stage of science, when it has not yet broken loose from the trammels of every-day phraseology. The extraordinary prevalence of the fallacy among the Greek philosophers may be accounted for by their generally knowing no other language than their own; from which it was a consequence that their ideas followed the accidental or arbitrary combinations of that language, more completely than can happen among the moderns to any but illiterate persons. They had great difficulty in distinguishing between things which their language confounded, or in putting mentally together things which it distinguished; and could hardly combine the objects in nature, into any classes but those which were made for them by the popular phrases of their own country; or at least could not help fancying those classes to be natural and all others arbitrary and artificial. Accordingly, scientific investigation among the Greek schools of speculation and their followers in the Middle Ages, was little more than a mere sifting and analyzing of the notions attached to common language. They thought that by determining the meaning of words, they could become acquainted with facts. “They took for granted,” says Dr. Whewell,[241] “that philosophy must result from the relations of those notions which are involved in the common use of language, and they proceeded to seek it by studying such notions.” In his next chapter, Dr. Whewell has so well illustrated and exemplified this error, that I shall take the liberty of quoting him at some length.

“The propensity to seek for principles in the common usages of language may be discerned at a very early period. Thus we have an example of it in a saying which is reported of Thales, the founder of Greek philosophy. When he was asked, ‘What is the greatest thing?’ he replied ‘Place; for all other things are in the world, but the world is in it.’ In Aristotle we have the consummation of this mode of speculation. The usual point from which he starts in his inquiries is, that we say thus or thus in common language. Thus, when he has to discuss the question whether there be, in any part of the universe, a void, or space in which there is nothing, he inquires first in how many senses we say that one thing is in another. He enumerates many of these; we say the part is in the whole, as the finger is in the hand; again we say, the species is in the genus, as man is included in animal; again, the government of Greece is in the king; and various other senses are described and exemplified, but of all these the most proper is when we say a thing is in a vessel, and generally in place. He next examines what place is, and comes to this conclusion, that ‘if about a body there be another body including it, it is in place, and if not, not.’ A body moves when it changes its place; but he adds, that if water be in a vessel, the vessel being at rest, the parts of the water may still move, for they are included by each other; so that while the whole does not change its place, the parts may change their place in a circular order. Proceeding then to the question of a void, he as usual examines the different senses in which the term is used, and adopts as the most proper, place without matter, with no useful result.

“Again, in a question concerning mechanical action, he says, ‘When a man moves a stone by pushing it with a stick, we say both that the man moves the stone, and that the stick moves the stone, but the latter more properly.’

“Again, we find the Greek philosophers applying themselves to extract their dogmas from the most general and abstract notions which they could detect; for example, from the conception of the Universe as One or as Many things. They tried to determine how far we may, or must, combine with these conceptions that of a whole, of parts, of number, of limits, of place, of beginning or end, of full or void, of rest or motion, of cause and effect, and the like. The analysis of such conceptions with such a view, occupies, for instance, almost the whole of Aristotle’s Treatise on the Heavens.”

The following paragraph merits particular attention: “Another mode of reasoning, very widely applied in these attempts, was the doctrine of contrarieties, in which it was assumed that adjectives or substances which are in common language, or in some abstract mode of conception, opposed to each other, must point at some fundamental antithesis in nature, which it is important to study. Thus Aristotle says that the Pythagoreans, from the contrasts which number suggests, collected ten principles—Limited and Unlimited, Odd and Even, One and Many, Right and Left, Male and Female, Rest and Motion, Straight and Curved, Light and Darkness, Good and Evil, Square and Oblong.... Aristotle himself deduced the doctrine of four elements and other dogmas by oppositions of the same kind.”

вернуться

240

Dissertation, p. 27.

вернуться

241

Hist. Ind. Sc., Book i., chap. i.