Выбрать главу

§ 3. But though Dr. Whewell has not shaken Stewart’s doctrine as to the hypothetical character of that portion of the first principles of geometry which are involved in the so-called definitions, he has, I conceive, greatly the advantage of Stewart on another important point in the theory of geometrical reasoning; the necessity of admitting, among those first principles, axioms as well as definitions. Some of the axioms of Euclid might, no doubt, be exhibited in the form of definitions, or might be deduced, by reasoning, from propositions similar to what are so called. Thus, if instead of the axiom, Magnitudes which can be made to coincide are equal, we introduce a definition, “Equal magnitudes are those which may be so applied to one another as to coincide;” the three axioms which follow (Magnitudes which are equal to the same are equal to one another—If equals are added to equals, the sums are equal—If equals are taken from equals, the remainders are equal), may be proved by an imaginary superposition, resembling that by which the fourth proposition of the first book of Euclid is demonstrated. But though these and several others may be struck out of the list of first principles, because, though not requiring demonstration, they are susceptible of it; there will be found in the list of axioms two or three fundamental truths, not capable of being demonstrated: among which must be reckoned the proposition that two straight lines can not inclose a space (or its equivalent, Straight lines which coincide in two points coincide altogether), and some property of parallel lines, other than that which constitutes their definition: one of the most suitable for the purpose being that selected by Professor Playfair: “Two straight lines which intersect each other can not both of them be parallel to a third straight line.”[70]

The axioms, as well those which are indemonstrable as those which admit of being demonstrated, differ from that other class of fundamental principles which are involved in the definitions, in this, that they are true without any mixture of hypothesis. That things which are equal to the same thing are equal to one another, is as true of the lines and figures in nature, as it would be of the imaginary ones assumed in the definitions. In this respect, however, mathematics are only on a par with most other sciences. In almost all sciences there are some general propositions which are exactly true, while the greater part are only more or less distant approximations to the truth. Thus in mechanics, the first law of motion (the continuance of a movement once impressed, until stopped or slackened by some resisting force) is true without qualification or error. The rotation of the earth in twenty-four hours, of the same length as in our time, has gone on since the first accurate observations, without the increase or diminution of one second in all that period. These are inductions which require no fiction to make them be received as accurately true: but along with them there are others, as for instance the propositions respecting the figure of the earth, which are but approximations to the truth; and in order to use them for the further advancement of our knowledge, we must feign that they are exactly true, though they really want something of being so.

§ 4. It remains to inquire, what is the ground of our belief in axioms—what is the evidence on which they rest? I answer, they are experimental truths; generalizations from observation. The proposition, Two straight lines can not inclose a space—or, in other words, Two straight lines which have once met, do not meet again, but continue to diverge—is an induction from the evidence of our senses.

This opinion runs counter to a scientific prejudice of long standing and great strength, and there is probably no proposition enunciated in this work for which a more unfavorable reception is to be expected. It is, however, no new opinion; and even if it were so, would be entitled to be judged, not by its novelty, but by the strength of the arguments by which it can be supported. I consider it very fortunate that so eminent a champion of the contrary opinion as Dr. Whewell has found occasion for a most elaborate treatment of the whole theory of axioms, in attempting to construct the philosophy of the mathematical and physical sciences on the basis of the doctrine against which I now contend. Whoever is anxious that a discussion should go to the bottom of the subject, must rejoice to see the opposite side of the question worthily represented. If what is said by Dr. Whewell, in support of an opinion which he has made the foundation of a systematic work, can be shown not to be conclusive, enough will have been done, without going elsewhere in quest of stronger arguments and a more powerful adversary.

It is not necessary to show that the truths which we call axioms are originally suggested by observation, and that we should never have known that two straight lines can not inclose a space if we had never seen a straight line: thus much being admitted by Dr. Whewell, and by all, in recent times, who have taken his view of the subject. But they contend, that it is not experience which proves the axiom; but that its truth is perceived a priori, by the constitution of the mind itself, from the first moment when the meaning of the proposition is apprehended; and without any necessity for verifying it by repeated trials, as is requisite in the case of truths really ascertained by observation.

They can not, however, but allow that the truth of the axiom, Two straight lines can not inclose a space, even if evident independently of experience, is also evident from experience. Whether the axiom needs confirmation or not, it receives confirmation in almost every instant of our lives; since we can not look at any two straight lines which intersect one another, without seeing that from that point they continue to diverge more and more. Experimental proof crowds in upon us in such endless profusion, and without one instance in which there can be even a suspicion of an exception to the rule, that we should soon have stronger ground for believing the axiom, even as an experimental truth, than we have for almost any of the general truths which we confessedly learn from the evidence of our senses. Independently of a priori evidence, we should certainly believe it with an intensity of conviction far greater than we accord to any ordinary physical truth: and this too at a time of life much earlier than that from which we date almost any part of our acquired knowledge, and much too early to admit of our retaining any recollection of the history of our intellectual operations at that period. Where then is the necessity for assuming that our recognition of these truths has a different origin from the rest of our knowledge, when its existence is perfectly accounted for by supposing its origin to be the same? when the causes which produce belief in all other instances, exist in this instance, and in a degree of strength as much superior to what exists in other cases, as the intensity of the belief itself is superior? The burden of proof lies on the advocates of the contrary opinion: it is for them to point out some fact, inconsistent with the supposition that this part of our knowledge of nature is derived from the same sources as every other part.[71]

This, for instance, they would be able to do, if they could prove chronologically that we had the conviction (at least practically) so early in infancy as to be anterior to those impressions on the senses, upon which, on the other theory, the conviction is founded. This, however, can not be proved: the point being too far back to be within the reach of memory, and too obscure for external observation. The advocates of the a priori theory are obliged to have recourse to other arguments. These are reducible to two, which I shall endeavor to state as clearly and as forcibly as possible.

вернуться

70

We might, it is true, insert this property into the definition of parallel lines, framing the definition so as to require, both that when produced indefinitely they shall never meet, and also that any straight line which intersects one of them shall, if prolonged, meet the other. But by doing this we by no means get rid of the assumption; we are still obliged to take for granted the geometrical truth, that all straight lines in the same plane, which have the former of these properties, have also the latter. For if it were possible that they should not, that is, if any straight lines in the same plane, other than those which are parallel according to the definition, had the property of never meeting although indefinitely produced, the demonstrations of the subsequent portions of the theory of parallels could not be maintained.

вернуться

71

Some persons find themselves prevented from believing that the axiom, Two straight lines can not inclose a space, could ever become known to us through experience, by a difficulty which may be stated as follows: If the straight lines spoken of are those contemplated in the definition—lines absolutely without breadth and absolutely straight—that such are incapable of inclosing a space is not proved by experience, for lines such as these do not present themselves in our experience. If, on the other hand, the lines meant are such straight lines as we do meet with in experience, lines straight enough for practical purposes, but in reality slightly zigzag, and with some, however trifling, breadth; as applied to these lines the axiom is not true, for two of them may, and sometimes do, inclose a small portion of space. In neither case, therefore, does experience prove the axiom.

Those who employ this argument to show that geometrical axioms can not be proved by induction, show themselves unfamiliar with a common and perfectly valid mode of inductive proof; proof by approximation. Though experience furnishes us with no lines so unimpeachably straight that two of them are incapable of inclosing the smallest space, it presents us with gradations of lines possessing less and less either of breadth or of flexure, of which series the straight line of the definition is the ideal limit. And observation shows that just as much, and as nearly, as the straight lines of experience approximate to having no breadth or flexure, so much and so nearly does the space-inclosing power of any two of them approach to zero. The inference that if they had no breadth or flexure at all, they would inclose no space at all, is a correct inductive inference from these facts, conformable to one of the four Inductive Methods hereinafter characterized, the Method of Concomitant Variations; of which the mathematical Doctrine of Limits presents the extreme case.