Выбрать главу

Итак, перед нами два принципа. Каждый из них достаточно прост, убедителен и на первый взгляд безобиден. Каждый утверждает идею, находящуюся на грани очевидного. В чем же их опасность для устоявшихся представлений? Где кроется угроза революционного переворота в физике?

В своей статье Эйнштейн пишет, что эти принципы состоят «лишь в кажущемся противоречии». Но что имеет он в виду под этим противоречием? В чем состоит конфликт? И почему это противоречие лишь кажущееся? Что мог Эйнштейн подразумевать под этим?

Постарайтесь внимательно проследить за ходом его мысли. Ваши усилия не пропадут даром. Однако предупреждаем: по мере того как вы будете вникать в суть рассуждений Эйнштейна, вы вдруг поймаете себя на том, что киваете в знак согласия головой. Через некоторое время его доводы станут казаться вам настолько очевидными и не содержащими ничего оригинального, что вы, пожалуй, начнете клевать носом. Затем наступит момент, когда вы с трудом сможете сдержать зевоту. Берегитесь: к этому времени вы зайдете столь далеко, что уклониться от потрясения не удастся, ибо очарование эйнштейновской логики заключается именно в ее кажущейся наивности и простоте.

А теперь рассмотрим два одинаковых равномерно движущихся тела — пусть это будут два технически оснащенных космических корабля, которые показаны ниже на рисунке. Представим себе, что эти корабли — назовем их по первым буквам имен их капитанов А и В — находятся далеко в космосе и, следовательно, не испытывают никаких внешних воздействий. Пусть их равномерное относительное движение происходит со скоростью, скажем, 17 000 км в секунду, как это указано на том же рисунке. В центре каждого корабля находится лампа. Когда А и В оказываются друг против друга, капитаны на мгновение зажигают лампы, посылая, таким образом, световые импульсы вправо и влево. На рисунке показаны корабли и импульсы света мгновением позже. Для удобства мы изобразили их так, как если бы А находился в состоянии покоя.

Итак, почва для вопроса подготовлена. По второму принципу Эйнштейна, скорости световых импульсов не зависят от движения их источников. Следовательно, — и это немаловажно — световые импульсы занимают положения, показанные на рисунке. Капитан А в своем корабле измеряет скорости их распространения и вправо, и влево и обнаруживает, что в обоих случаях скорость имеет одно и то же значение с. Капитан В также проводит соответствующие измерения на борту своего корабля. Он движется относительно А со скоростью 17 000 км в секунду, в то время как посылаемые им световые импульсы не отстают от импульсов, посылаемых А. Вы согласны с этим? В таком случае возникает вопрос: каковы измеренные В скорости импульсов света относительно его корабля?

Можно было бы ожидать, что, с учетом своего движения относительно А, В измерит скорость своих световых импульсов, движущихся относительно его корабля влево, и она окажется равной с + 17 000, а скорость движущихся вправо импульсов — куда меньшей, а именно, с — 17 000.

Но если бы это было так, то нарушился бы первый постулат Эйнштейна. Как же так? Ведь если А и В проводят в точности одни и те же эксперименты на борту своих кораблей и совершают равномерное движение, то они должны получить одинаковые результаты. Таким образом, В, как и А, измерив обе скорости, обнаружит, что они равны с. В самом деле, независимо от того, как быстро движется В относительно А, пытаясь догнать удаляющийся импульс света, свет всегда будет удаляться от него с одной и той же скоростью с. В не может догнать удаляющийся свет точно так же, как на Земле невозможно достичь горизонта. Ни одно материальное тело не может двигаться с быстротой света. В этом поразительном выводе неожиданно заключен ответ на вопрос 16-летнего Эйнштейна о движении за световой волной.