Кардано заметил, что если случайное событие имеет несколько равновероятных исходов, то вероятность какого-либо конкретного исхода равна доле, которую он занимает среди всех возможных. Это означает, что если имеется один шанс из шести, что некое событие случится, то вероятность наступления этого события равна одной шестой. Так что, когда вы бросаете игральную кость, шанс, что выпадет шестерка, равен 1/6. Шанс выпадения четного числа равен 3/6, то есть попросту 1/2. Вероятность можно определить как правдоподобие наступления события, выраженное в виде дроби. Невозможность имеет вероятность 0; полная определенность — вероятность 1; а все остальное расположено между ними.
Кажется, все просто, но в действительности это не так. В древние времена и греки, и римляне, и индийцы увлекались азартными играми. Но ни один из этих народов не попытался понять, как математические законы управляют случайностью. В Риме, например, подбрасывание монеты использовали как средство разрешения споров: выпадение стороны с изображением Юлия Цезаря означало, что император поддерживал предлагаемое решение. Случайность воспринималась не как случайность, а как выражение божественной воли. На протяжении всей своей истории человечество демонстрировало недюжинное воображение, изобретая различные способы анализа случайных событий. Например, предсказание по книгам представляло собой испрошение о наставлении посредством случайного выбора отрывка из некоторого литературного произведения. Точно так же, согласно Библии, вытягивание более короткой соломинки было объективным способом выбора, коль скоро Господь уже определил, чему должно случиться: «В полу бросается жребий, но все решение его — от Господа» (Притч., 16:33).
Предрассудки представляли собой мощный тормоз на пути научного подхода к вероятности, но не прошло и тысячи лет, в течение которых люди бросали кости, как мистицизм все-таки удалось преодолеть, чему во многом поспособствовала одна из самых сильных человеческих страстей — стремление к финансовой выгоде. И Джероламо Кардано был первым, кто сумел обуздать фортуну. Существует мнение, что открытие теории вероятностей даже оказало определяющее влияние на упадок религии и затухание предрассудков в течение нескольких последних столетий. Если непредсказуемые события подчиняются математическим законам, то нет нужды в их божественном объяснении. Наступление секуляризации в мире обычно связывают с мыслителями, подобными Чарльзу Дарвину и Фридриху Ницше, однако вполне возможно, что первым, кто толкнул камень и привел в движение всю лавину, был Джероламо Кардано.
Как я уже говорил, вероятность получить шестерку при бросании одной кости равна 1/6. Бросим вторую кость; шанс получить шестерку снова равен 1/6. Каковы шансы получить пару шестерок при бросании пары костей? Самое основное правило теории вероятностей состоит в том, что вероятность наступления двух независимых событий равна вероятности первого, умноженной на вероятность второго. При бросании пары костей исходы, относящиеся к первой кости, не зависят от исходов, относящихся ко второй кости, и наоборот. Таким образом, шанс появления двух шестерок равен 1/6 × 1/6, что есть 1/36. Это можно увидеть, перебирая все возможные комбинации выпадения двух костей: имеется 36 равновероятных исходов, лишь один из которых представляет собой две шестерки.
Если посмотреть на это с другой стороны, то из 36 возможных исходов 35 не представляют собой выпадание двух шестерок. Таким образом, вероятность невыпадания двух шестерок равна 35/36. Вместо того чтобы перебирать 35 примеров, можно с равным успехом начать с полного набора исходов, а затем вычесть случаи, когда выпадают две шестерки. В нашем примере это вычисление выглядит как 1 - 1/36 = 35/36. Итак, вероятность того, что некоторое событие не случится, равна 1 минус вероятность, что это случится.
В давние времена стол для игры в кости заменял собой игровые автоматы, и игроки делали ставки на исход бросания костей. Одна классическая азартная игра состояла в том, чтобы бросить четыре кости и поставить на выпадение по крайней мере одной шестерки. Получался славный источник скромного дохода для всякого, кто желал поставить на это, и наших математических познаний уже достаточно, чтобы увидеть почему: