Выбрать главу

Однако, прочитав о результатах Яноша, опубликованных в 1831 году в приложении к книге его отца Фаркаша, Гаусс дал понять, что он еще раньше высказал предположение о возможной неправомерности постулата о параллельных. Гаусс написал своему старому университетскому товарищу Фаркашу письмо, в котором отозвался о Яноше как о «гении первой величины», однако же добавил, что не может воздать должной похвалы его замечательному научному открытию: «Ибо хвалить его означало бы хвалить самого себя. Содержание его труда целиком совпадает с моими собственными открытиями, некоторым из которых исполнилось уже 30 или 35 лет. Поначалу я собирался записать все это, дабы оно по крайней мере не ушло в небытие вместе со мной. Поэтому приятной неожиданностью стало известие, что я избавлен от сего труда, и в особенности я рад, что не кто иной, как сын моего старого друга, помог мне в этом деле». Узнав, что первым к цели пришел Гаусс, Янош очень огорчился. Когда же, уже годы спустя, он узнал, что русский математик Лобачевский тоже опубликовал доказательство раньше него, он был просто потрясен, а потом уверовал в то, что Лобачевский — вымышленный персонаж, изобретенный Гауссом в качестве изощренной уловки с целью лишить его, Яноша, первенства.

* * *

Финальный аккорд в исследования пятого постулата Гаусс сделал незадолго до своей смерти. Будучи уже серьезно больным, он выбрал для одного из своих самых способных учеников, 27-летнего Бернхарда Римана (1826–1866) — такую тему пробной лекции: «О гипотезах, лежащих в основании геометрии». Риман — болезненно застенчивый сын лютеранского пастора, готовясь к лекции, поначалу испытывал довольно серьезные затруднения, зато страдания были не напрасны — его лекции было суждено произвести революцию в математике. Впоследствии он способствовал перевороту и в физике — предложенные им новаторские идеи оказались теми ценнейшими семенами, из которых потом выросла общая теория относительности Эйнштейна.

Лекция Римана, прочитанная им в 1854 году, ознаменовала собой тектонический сдвиг в понимании геометрии, возникающий в результате низвержения постулата о параллельных — Риман дал описание всеобъемлющей теории, включающей как Евклидовы, так и не Евклидовы идеи. Ключевой концепцией, лежавшей в основе теории Римана, была кривизна пространства. Когда поверхность имеет нулевую кривизну, она является плоской, или евклидовой, и тогда выполняется все, что получено в «Началах». Когда же поверхность искривлена, то есть имеет положительную или отрицательную кривизну, она — неевклидова, и применительно к ней написанное в «Началах» неверно.

Простейший способ понять, что такое кривизна, учит нас Риман, — рассмотреть то, что происходит с треугольниками. На поверхности нулевой кривизны сумма углов треугольника — 180 градусов. На поверхности положительной кривизны эта сумма превышает 180 градусов. На поверхности отрицательной кривизны углы треугольника дают в сумме менее 180 градусов.

Сфера имеет положительную кривизну. Это можно понять, рассматривая сумму углов треугольника в левой части приведенного ниже рисунка: треугольник там составлен из отрезков экватора, Гринвичского меридиана и линии, идущей по 73-му градусу долготы к западу от Гринвича (эта долгота проходит через Нью-Йорк). Оба угла, под которыми линии долготы пересекают экватор, равны 90 градусам, так что сумма всех трех углов должна быть больше 180 градусов.

А поверхности какого типа имеют отрицательную кривизну? Другими словами, где искать те треугольники, углы которых в сумме дают меньше 180 градусов? Откройте пачку картофельных чипсов «Принглс», и вы поймете где. Нарисуйте треугольник на седловой части чипса (для чего можно использовать тюбик с нежной французской горчицей) — треугольник будет выглядеть как «вогнутый» в сравнении с «выпуклым» треугольником, который мы наблюдали на сфере. Ясно, что его углы в сумме дают менее 180 градусов.

Поверхность отрицательной кривизны называется гиперболической. Итак, поверхность чипса «Принглс» — гиперболическая. Впрочем, чипс — это всего лишь первый шаг к пониманию гиперболической геометрии, потому что у него есть край. Стоит только показать математику край, как он тут же захочет выйти за его пределы.

Можно посмотреть на это и другим способом. Проще всего представить себе поверхность нулевой кривизны без края: взять хотя бы ту страницу, что сейчас перед вами, разгладить ее, положить на стол, а потом продолжить по всем направлениям до бесконечности. Если бы мы жили на подобной поверхности и отправились на прогулку вдоль прямой линии в любом направлении, то никогда не добрались бы до края. Аналогичным образом, у нас есть очевидный пример поверхности положительной кривизны без края: это сфера. Если бы мы жили на сфере, то могли бы идти, никогда не останавливаясь и нигде не встречая края. (Конечно, мы и в самом деле живем на том, что представляет собой грубое приближение к сфере. Если бы Земля была совершенно гладкой, без всяких океанов и гор, встающих у нас на пути, и мы бы отправились в путь, в конце нашего путешествия мы снова вернулись бы к исходной точке — на самом деле мы двигались бы по окружности.)