Причина, по которой число 12 может считаться лучше числа 10, — это его свойства делимости. 12 делится на 2, 3, 4 и 6, тогда как 10 — только на 2 и 5. По мнению сторонников двенадцатеричной системы, в нашей повседневной жизни гораздо чаще приходится делить на 3 или 4, чем на 5. Возьмем, к примеру, хозяина магазинчика. Если у него имеется двенадцать яблок, то он может разделить их на две упаковки по шесть яблок, на три упаковки по четыре, на четыре по три или на шесть упаковок по два яблока каждая. Это гораздо практичнее, чем дележ десяти яблок, когда все имеющиеся возможности — это две упаковки по пять яблок или пять упаковок по два яблока. Само слово «grocer» — бакалейщик — на самом деле является свидетельством предпочтения, которое торговцы оказывали числу 12: оно произошло от слова «gross», означающего дюжину дюжин, то есть 144. Разнообразная делимость числа 12 также объясняет преимущество, которым обладают футы и дюймы по сравнению с метрами и сантиметрами: фут, в отличие от метра, можно легко и просто разделить на два, три и четыре — большое удобство, например для плотников и закройщиков.
Свойства делимости влияют также и на таблицу умножения. Самое простое для запоминания умножение в системе с любым основанием — это умножение на числа, на которые это основание делится. Вот почему при основании 10 таблицу умножения на 2 и 5 — где в результате могут получиться только четные числа и числа, оканчивающиеся на 5 или 0, — так легко запомнить. Подобным же образом при основании 12 простейшая часть таблицы умножения — это умножение на делители основания, то есть 2, 3, 4 и 6:
| 2 × 1 = 2, | 3 × 1 = 3, | 4 × 1 = 4, | 6 × 1 = 6, |
| 2 × 2 = 4, | 3 × 2 = 6, | 4 × 2 = 8, | 6 × 2 = 10, |
| 2 × 3 = 6, | 3 × 3 = 9, | 4 × 3 = 10, | 6 × 3 = 16, |
| 2 × 4 = 8, | 3 × 4 = 10, | 4 × 4 = 14, | 6 × 4 = 20, |
| 2 × 5 = Χ, | 3 × 5 = 13, | 4 × 5 = 18, | 6 × 5 = 26, |
| 2 × 6 = 10, | 3 × 6 = 16, | 4 × 6 = 20, | 6 × 6 = 30, |
| 2 × 7 = 12, | 3 × 7 = 19, | 4 × 7 = 24, | 6 × 7 = 36, |
| 2 × 8 = 14, | 3 × 8 = 20, | 4 × 8 = 28, | 6 × 8 = 40, |
| 2 × 9 = 16, | 3 × 9 = 23, | 4 × 9 = 30, | 6 × 9 = 46, |
| 2 × Χ = 18, | 3 × Χ = 26, | 4 × Χ = 34, | 6 × Χ = 50, |
| 2 × 1Ƹ = 1Χ, | 3 × Ƹ = 29, | 4 × Ƹ = 38, | 6 × Ƹ = 56, |
| 2 × 10 = 20, | 3 × 10 = 30, | 4 × 10 = 40, | 6 × 10 = 60. |
Посмотрите на последние цифры в каждом столбце, и вы увидите замечательную закономерность. При умножении на 2 вы, конечно, получаете четные числа; при умножении на 3 — числа, оканчивающиеся на 3, 6, 9 и 0; при умножении на 4 — числа, оканчивающиеся на 4, 8 и 0, а при умножении на 6 — числа, оканчивающиеся на 6 или 0. Другими словами, при основании 12 мы получаем таблицу умножения на 2, 3, 4 и 6 «забесплатно». Поскольку многие дети испытывают сложности в запоминании таблицы умножения, переход к основанию 12 был бы гуманитарным актом величайшего масштаба. Так, по крайней мере, утверждают некоторые ученые.
Самым знаменитым призывом к борьбе за дюжину стала статья писателя Ф. Эмерсона Эндрюса, опубликованная в «Atlantic Monthly» в октябре 1934 года. Эта статья привела к созданию Американского дуодецимального общества (АДО). (Впоследствии название было изменено на Американское дюжинное общество). Эндрюс утверждал, что принятие десятичной системы означало «не имеющую оправдания недальновидность, и ставил вопрос о том, будет ли отказ от нее сопряжен с „колоссальными потерями“». «Duodecimal Bulletin», который продолжает выходить по сей день, представляет собой отличное издание и единственное место за пределами медицинской литературы, где появляются статьи о гексадактильности — шести пальцах при рождении. (Она распространена более широко, чем можно было бы подумать: один из каждых 500 людей рождается по крайней мере с одним лишним пальцем на руках или ногах.) Юношеская страсть Майкла де Флигера к основанию 12 не увяла; в настоящий момент он является президентом АДО. Майкл столь привержен к этой системе, что использует ее в своей работе дизайнера цифровых архитектурных моделей.