Выбрать главу

Как показать, что площадь круга равна πr2

Чтобы квадрировать круг, нам надо, используя только циркуль и линейку, построить квадрат, который имеет в точности ту же площадь, что и круг, ограниченный заданной окружностью. Мы теперь знаем, что линия длиной r — это радиус окружности, площадь круга внутри которой равна πr2, а также что у квадрата с площадью πr2 сторона должна иметь длину r√π (поскольку (r√π)2 = r2(√π)2 = r2π = πr2). Так что превращение окружности в квадрат можно свести к задаче построения длины r по заданной длине r. Или, если для удобства взять r равным 1, то к построению отрезка длины, если дан отрезок длины 1.

Используя координатную геометрию, о которой мы будем говорить в следующей главе, можно выразить процесс построения линии алгебраически, в виде конечного уравнения. Можно показать, что коль скоро x есть решение конечного уравнения, то начиная с отрезка длины 1 можно построить отрезок длины x. Но если x не есть решение какого-либо конечного уравнения — другими словами, если x трансцендентно, — то построить отрезок длины x невозможно. Ну, а тот факт, что π трансцендентно, означает, что квадратный корень из π также трансцендентен (тут вам предстоит поверить мне на слово), и отрезок такой длины построить невозможно. Трансцендентность числа π доказывает, что круг нельзя квадрировать.

Данное Линдеманном доказательство трансцендентности числа π перечеркнуло мечту бессчетного числа математиков. И тем не менее в 1897 году Законодательным собранием штата Индиана был выпущен знаменитый билль, содержавший доказательство квадратуры круга неким Е. Дж. Гудвином, местным сельским врачом, который преподнес свое доказательство в качестве «дара штату Индиана». Разумеется, этот сельский энтузиаст заблуждался. После доказательства Фердинанда фон Линдеманна, представленного им в 1882 году, математики, говоря о ком-то, что «он занимается квадратурой круга», имеют в виду, что он занимается чушью, в общем, чудак.

* * *

В течение двух столетий — XVIII и XIX — выяснилось, что загадочные свойства числа π проявляются не только в самой сердцевине античных геометрических задач, но и глубоко укоренены в новых областях знания, не демонстрирующих никакой очевидной связи с окружностями. «Это таинственное 3,141592…, что появляется из каждой двери и из каждого окна и вылезает из каждой каминной трубы», — писал британский математик Огастес Де Морган. Например, время качания маятника зависит от π. Смертность населения в данном регионе есть функция числа π. Если бросать монету 2n раз, то при очень большом n вероятность получить в точности 50 процентов орлов и 50 процентов решеток есть 1/√.

Вездесущность числа π, однако, сделала его чем-то большим, чем просто знаменитостью в мире чисел. Оно стало в общем смысле культурной иконой. Поскольку цифры, входящие в число π, никогда не повторяются, оно идеально подходит для тех, кто хочет проявить себя на поприще мастеров запоминания. Если запоминание чисел — ваше призвание, то можете считать, что цифры числа π — предел совершенства. Их запоминание стало увлечением по крайней мере с 1838 года, когда журнал «The Scotsman» сообщил, что 12-летний голландский мальчик продекламировал все 155 цифр π, известных на тот момент, перед аудиторией из ученых и особ королевской крови. Сегодня мировой рекорд принадлежит Акире Харагучи — 60-летнему инженеру на пенсии. Имеется запись его публичного выступления в 2006 году в окрестностях Токио, во время которого он продекламировал 100 000 десятичных знаков числа π. Выступление заняло у него 16 часов и 28 минут, включая пятиминутные перерывы каждые два часа, в которые он съедал несколько рисовых шариков. Он объяснил журналистам, что число π символизирует жизнь, поскольку его цифры никогда не повторяются и не следуют никакому порядку. Запоминание цифр числа π, добавил он, — это «религия Вселенной».

Простое заучивание числа π на память может быстро наскучить, но вот заучивание π на память и одновременное жонглирование — уже состязание! Рекорд здесь удерживает швед Матс Бергстен, которому без малого 60 лет и который сумел продекламировать 9778 цифр, жонглируя при этом тремя мячами. Он, правда, сказал мне, что более всего гордится своими успехами в тестировании памяти «Эверест», когда первые 10 000 цифр из разложения числа π разбиваются на 2000 групп по пять начиная с 14 159. Участникам состязания случайным образом зачитываются вслух 50 групп, и они должны сказать по памяти, какие пять чисел идут до и какие пять после прочитанных. Матс Бергстен — один из всего лишь четырех людей в мире, кто может сделать это без ошибок, и показанное им время — 17 минут и 39 секунд — самое быстрое. «Запомнить 10 000 цифр не одно за другим, а в случайном порядке — это куда большая нагрузка для ума», — сказал он мне.