Выбрать главу

Электрическая цепь из емкости, индуктивности и сопротивления, которая была им подробно изучена и применена в ряде практических случаев, получила специальное название «контур Томсона», а электромагнитные колебания, в нем возникающие, — «томсоновских колебаний». Та картина протекания электрического тока в колебательном контуре, которая создается в нашем воображении на основании работ Томсона, легла в основу всех дальнейших экспериментов с электрическими колебаниями и волнами. Замечательным выводом из работ Томсона является теория резонанса тока и напряжения, связанных с накоплением электромагнитной энергии в диэлектриках конденсаторов и в магнитном поле индуктивностей, из которых составляется резонансный контур. Такой резонансный (колебательный) контур по аналогии с подобными акустическими резонаторами стали называть резонатором. В приближении творческой мысли к представлению о возможности осуществления беспроводной связи не менее важными, чем работы Томсона, являются замечательные эксперименты с колебательным разрядом конденсатора, выполненные В. Федцерсеном[442]. Они наглядно показали, что электрическая искра может служить источником для создания электрических колебаний. Это был отправной этап для разработки всей высокочастотной аппаратуры, которой далее пользовались и предшественники А. С. Попова, и он сам. Возбуждением электрических колебаний искрой воспользовались в своих опытах и Герц, и Лодж, и многие другие. Даже после смерти Попова искровой разряд долгое время применялся в аппаратах беспроводной связи.

Важный дальнейший шаг в направлении углубления теории Максвелла сделан был в 1874 году русским профессором Н. А. Умовым[443], который математически рассчитал мощность энергии разряда в пространстве и наметил основные физические свойства явлений, связанных с распространением электромагнитных волн. Насколько важное значение придавали работе Умова, можно судить по тому, что в настоящее время вектор, характеризующий величину мощности распространяющейся электромагнитной энергии, во всем мире называют вектором Умова — Пойнтинга (последний занимался этими вопросами позднее).

Для радиотехники исключительное значение имели выводы Максвелла, относящиеся к распространению электромагнитных волн. В реальности существования их ученый мир убедился после экспериментальных работ ученика Г. Гельмгольца[444] Генриха Рудольфа Герца[445], осуществленных через десятилетие после смерти Максвелла, так и не дождавшегося всеобщего признания своих взглядов.

Глубоко убежденный в справедливости воззрений Фарадея и Максвелла, Герц поставил перед собой задачу экспериментально доказать реальное существование электромагнитных волн в окружающем разряд пространстве. Он воспользовался электрической искрой в сочетании с контуром или «вибратором» высокой добротности для возбуждения электромагнитных волн в окружающем пространстве и явлением резонанса в приемном колебательном контуре для обнаружения электромагнитных волн в месте их приема. Герц установил, что электромагнитные волны действительно подчиняются тем же законам (отражения, преломления и поляризации), что и световые волны. Один из одареннейших экспериментаторов, каких только знает история естествознания (не забудем, что он умер, не дожив до тридцати семи лет), Герц выполнил эти основные экспериментальные исследования и описал их в своей работе, озаглавленной «О весьма быстрых электрических колебаниях»[446].

Электромагнитные волны, возбуждаемые Герцем при его опытах, нельзя было обнаружить за пределами лаборатории или сада Боннского университета, где эти опыты проводились. Для опытов на более далекие расстояния резонатор Герца с вторичной искрой был слишком малочувствителен. Тем не менее Герц мог сознательно управлять электромагнитными волнами и экспериментально доказать тождественность их со свойствами света. Естественно, что логическим продолжением работ должны были стать опыты по беспроводной связи. Над решением этой задачи трудились уже многие изобретатели и до Герца.

До недавнего времени, говоря о практическом значении работ Герца, обычно ссылались на его письмо к инженеру Губеру, который запросил Герца, нельзя ли применять открытые им волны для беспроводной связи. Ответ Герца гласил: «Силовые магнитные линии распространяются подобно лучам, так же как и электростатические силовые линии, только тогда, когда их колебания достаточно быстры; в этом случае оба типа силовых линий не отделимы друг от друга и лучи или волны, о которых идет речь в моих исследованиях, могли с одинаковым правом быть названы как магнитными, так и электрическими. Но колебания трансформатора или телефона намного более медленны. Предположим, что у нас 1000 колебаний в секунду, что уже представляется довольно высоким числом колебаний; этому соответствовала бы в эфире волна длиной в 300 км; допущенные расстояния применяемых зеркал должны были бы иметь размеры того же порядка. Если бы Вы были в состоянии получить вогнутые зеркала размером в материк, то Вы могли бы отлично поставить опыты, которые Вы имеете в виду. Но с обычными зеркалами практически сделать ничего нельзя, и Вы не сможете обнаружить ни малейшего действия. Так, по крайней мере, я думаю».

вернуться

442

Феддерсен Беренд Вильгельм (1832–1918) — немецкий физик. В русском переводе работы Феддерсена «Материалы к познанию электрической искры» (1858), «Об электрическом волновом движении» (1859) и «Об электрическом разряде лейденской банки» (1862) приведены в кн.: Из предыстории радио. С. 264 и сл.

вернуться

443

Умов Николай Алексеевич (1846–1915) — тогда доцент Новороссийского университета. Упомянутое исследование содержится в труде «Уравнение движения энергии в телах» (Одесса, 1874); прибавление напечатано в Москве в том же году; выдержки из работ Умова см.: Из предыстории радио. С. 227–230.

вернуться

444

Гельмгольц Герман Людвиг Фердинанд (1821–1894) — немецкий естествоиспытатель, работавший в различных областях физики, математики, физиологии и психологии, способствовавший правильному пониманию закона сохранения энергии; в то время профессор Берлинского университета. В 1868 году избран членом-корреспондентом Петербургской академии наук по разряду биологическому.

вернуться

445

Генрих Рудольф Герц (1857–1894) проводил упомянутые изыскания в Карлслуэ, где был профессором в Высшей технической школе, и затем в Боннском университете, где он занимал кафедру физики. Основные работы Герца по электромагнетизму в русском переводе см.: Из предыстории радио. С. 131 и сл. Библиографию трудов Герца и работ о нем см. в кн.: Герц Г. Принципы механики, изложенные в новой связи. М., 1959. С. 374–382.

вернуться

446

Из предыстории радио. С. 131.