Аннотация
Эта книга поможет читателю овладеть алгоритмами обучения с подкреплением (ОП) и научиться реализовывать их при создании самообучающихся агентов. В первой части рассматриваются различные элементы ОП, сфера его применения, инструменты, необходимые для работы в среде ОП. Вторая и третья части посвящены непосредственно алгоритмам. В числе прочего автор показывает, как сочетать Q-обучение с нейронными сетями для решения сложных задач, описывает методы градиента стратегии, TRPO и PPO, позволяющие повысить производительность и устойчивость, а также детерминированные алгоритмы DDPG и TD3. Читатель узнает о том, как работает техника подражательного обучения, познакомится с алгоритмами исследования на базе верхней доверительной границы (UCB и UCB1) и мета-алгоритмом ESBAS. Издание предназначено для тех, кто интересуется исследованиями в области искусственного интеллекта, применяет в работе глубокое обучение или хочет освоить обучение с подкреплением с нуля. Обязательное условие – владение языком Python на рабочем уровне.
![Хватит тратить время на скучные академические фолианты! Изучение Computer Science может быть веселым и увлекательным занятием.
Владстон Феррейра Фило знакомит нас... Теоретический минимум по Computer Science [Все, что нужно знать программисту и разработчику]](https://www.rulit.me/data/programs/images/teoreticheskij-minimum-po-computer-science-vse-chto-nuzhno-z_522475.jpg)







Комментарии к книге "Алгоритмы обучения с подкреплением на Python"