Аннотация
Эта книга поможет читателю овладеть алгоритмами обучения с подкреплением (ОП) и научиться реализовывать их при создании самообучающихся агентов. В первой части рассматриваются различные элементы ОП, сфера его применения, инструменты, необходимые для работы в среде ОП. Вторая и третья части посвящены непосредственно алгоритмам. В числе прочего автор показывает, как сочетать Q-обучение с нейронными сетями для решения сложных задач, описывает методы градиента стратегии, TRPO и PPO, позволяющие повысить производительность и устойчивость, а также детерминированные алгоритмы DDPG и TD3. Читатель узнает о том, как работает техника подражательного обучения, познакомится с алгоритмами исследования на базе верхней доверительной границы (UCB и UCB1) и мета-алгоритмом ESBAS. Издание предназначено для тех, кто интересуется исследованиями в области искусственного интеллекта, применяет в работе глубокое обучение или хочет освоить обучение с подкреплением с нуля. Обязательное условие – владение языком Python на рабочем уровне.

![Технологии анализа текстовой информации стремительно меняются под влиянием машинного
обучения. Нейронные сети из теоретических научных исследований перешли в... Прикладной анализ текстовых данных на Python [Машинное обучение и создание приложений обработки естественного языка]](https://www.rulit.me/data/programs/images/prikladnoj-analiz-tekstovyh-dannyh-na-python-mashinnoe-obuchenie-i-soz_603555.jpg)








Комментарии к книге "Алгоритмы обучения с подкреплением на Python"