Таким образом, если заключение необходимо, ничто не мешает, чтобы средний (термин), посредством которого ведется доказательство, не был о необходимо (присущем), ибо необходимое можно выводить и из не необходимого, как равно и истинное — из неистинного[775]. Но если средний (термин) необходим, то тогда необходимо и заключение, точно так же как из истинных (посылок) всегда вытекает истинное. В самом деле, пусть А необходимо приписывается Б, и Б — В, тогда А необходимо присуще также и В. Но если заключение не о необходимо (присущем), то и средний (термин) не может быть о необходимо (присущем). Действительно, пусть А не необходимо присуще В, но необходимо присуще Б и Б необходимо присуще В. Тогда и А будет необходимо присуще В, но так не было предположено. Следовательно, так как то, что мы знаем на основании доказательства, должно быть присуще необходимо, то ясно, что доказательство должно быть дано также посредством среднего (термина в посылке) о необходимом. Иначе нельзя знать ни то, почему (что-нибудь есть), ни то, что оно необходимо есть. Но или подумают, что знают, (в действительности) не зная и принимая за необходимое то, что не необходимо; или не будут даже и таким образом думать, (что знают это), (независимо от того), знают ли о том, что (нечто есть), посредством средних (терминов)[776], или знают о том, почему (что-нибудь) есть, через неопосредствованные (положения).
О случайном, о том, что не есть само по себе, — как было определено то, что есть само по себе, — нет доказывающей науки, так как заключение (здесь) невозможно доказать с необходимостью, поскольку случайное может и не быть присущим; в этом смысле я и говорю о случайном. Но можно было, пожалуй, выразить недоумение, зачем вообще нужно спрашивать об этом[777]. раз не необходимо, чтобы было заключение, ибо не имеет значения, если кто-либо, поставив вопрос о первом попавшемся, затем выводит заключение. Однако ставить вопросы следует не так, чтобы (заключение, было необходимым через (положения, данные в виде) вопросов, но (так), чтобы его необходимо признали, если признают эти (положения), и (притом) как нечто истинное, если эти (положения) истинны.
Так как во всяком роде необходимо присущим является то, что присуще само по себе, и поскольку каждый (род) есть (то, что он есть), то очевидно, что доказательства, дающие знание, бывают о том, что присуще само по себе, и основаны на этом[778]. Случайное же не есть необходимое. Так что не необходимо (при силлогизмах о случайном) знать, почему присуще то, о чем выводится заключение, даже и в том случае, если бы оно всегда было, но не само по себе, каковы силлогизмы, (выведенные) из (внешних) признаков. Ибо о том, что есть само по себе, будут (в таком случае) знать не (как о существующем) само по себе и не будут знать, почему (оно есть). Знать же почему (что-нибудь) есть, — это то же самое, что знать через причину. Вот почему и средний (термин) должен быть сам по себе присущ третьему и первый — среднему[779].
ГЛАВА СЕДЬМАЯ (Недопустимость перехода доказательства из одного рода в другой)
Нельзя, следовательно, вести доказательство так, чтобы из одного рода переходить в другой, как, например, нельзя геометрическое положение доказать при помощи арифметики. Ибо в доказательствах различают три (стороны): во-первых, доказываемое, (то есть) заключение, — то, что какому-нибудь роду (предметов) присуще само по себе; во-вторых, основные положения, (то есть) те положения, на основании которых (ведется доказательство); в-третьих, род в качестве подлежащего, состояния которого и его случайные (признаки), сами по себе присущие ему, раскрывает доказательство. Следовательно, (положения), на основании которых ведется доказательство, могут быть одними и теми же, но в (науках), род которых различен, как, например, (род) арифметики и геометрии, не годится арифметическое доказательство для случайных (свойств) величин, если только (эти) величины не являются числами. А как это возможно в отношении некоторых (величин), об этом будет сказано позднее[780]. Но арифметическое доказательство всегда имеет дело с тем родом, относительно которого ведется (это) доказательство. И так же обстоит дело с другими (доказательствами). Так что если доказательство должно быть перенесено[781], то род (предметов) должен быть или безусловно тем же или в каком-то отношении (тем же). Ясно, что иначе быть не может, ибо и крайние и средние (термины) необходимо должны быть из одного и того же рода. Если же они сами по себе (не таковы), то они будут случайными (признаками)[782]. Ввиду этого посредством геометрии нельзя доказать, что противные друг другу (вещи) изучаются одной и той же наукой и что два куба составляют один куб[783]; (вообще) нельзя доказать посредством одной науки (положения) другой, за исключением тех (случаев), когда (науки) так относятся друг к другу, что одна подчинена другой, каково, например, отношение оптики к геометрии и гармонии — к арифметике. Нельзя (доказывать посредством геометрии и тогда), когда нечто присуще линиям не поскольку они суть линии и не поскольку оно (вытекает) из свойственных им начал, как, например, когда прямая линия есть самая красивая из линий или когда она находится в противоположном к окружности положении, ибо (эти признаки) присущи (линиям) не как свойственные их[784] роду, но как нечто общее (и с другими предметами).
783
Первое из этих положений составляет предмет доказательства в философии (см. Аристотель, Метафизика), второе – в арифметике (произведение двух кубических чисел есть кубическое число).