Выбрать главу

Why are archaeoastronomy (and ethnoastronomy) worth doing? If we want to understand more about why certain human communities did what they did in the past, then we need to try to understand aspects of their cosmologies—the ways in which they perceived the world. Astronomy is an essential part of nearly every cosmology, because all human communities have a sky, and the sky and the objects in it form an integral part of the perceived world. The objects in the night sky are immutable, regular, reliable, predictable; for communities who did not live inside brightly lit buildings and whose skies were not polluted by modern city lights, they were there for people to watch and contemplate night after night, season after season. They become imbued with meaning.

But what different groups of people perceive as important in the sky, and what significance they ascribe to it, is highly culture-dependent. Two good examples that illustrate this in different ways are the calendar of the Borana of Ethiopia, and the emu “dark cloud constellation” recognized by certain Aboriginal groups in Australia. Nevertheless, people generally try to keep their actions in harmony with the cosmos as they perceive it, which may be the reason many prehistoric monuments were deliberately aligned with objects in the wider landscape, including objects in the sky. Recognizing associations that certain human communities considered important can help us understand something of the worldviews that gave rise to them.

The advantage that the sky holds for us in trying to spot such associations is that it forms a part of the ancient environment that is directly accessible to us, unlike the terrestrial landscape, which is often transitory. We can use modern astronomy to reconstruct, with considerable accuracy, the appearance of the night sky at any place and time, including the motions of the sun, moon, stars, and planets. And this capability offers a considerable advantage, whether we are concerned with myths and beliefs relating to the sky, monumental alignments upon celestial objects, or other kinds of evidence.

See also:

Astro-Archaeology; “Brown” Archaeoastronomy; Cosmology; Ethnoastronomy; Ethnocentrism; “Green” Archaeoastronomy; Lockyer, Sir Norman (1836–1920); Methodology; Thom, Alexander (1894–1985).

Borana Calendar; Dresden Codex; Emu in the Sky; Hopi Calendar and Worldview; Misminay; Pawnee Cosmology; Stonehenge.

References and further reading

Archaeoastronomy, the supplement to the Journal for the History of Astronomy. Nos. 1 (1979) to 27 (2002). Published by Science History Publications, Cambridge, England.

Archaeoastronomy, the bulletin, subsequently journal, of the Center for Archaeoastronomy, College Park, MD. Vols. 1 (1977) to 11 (1993). Published by the Center for Archaeoastronomy, College Park, MD. Superseded by the University of Texas Press journal, see below.

Archaeoastronomy, The Journal of Astronomy in Culture. Vols. 14 (1999) to date. Published by the University of Texas Press. Aveni, Anthony F., ed. Archaeoastronomy in the New World. Cambridge: Cambridge University Press, 1982. ———, ed. World Archaeoastronomy. Cambridge: Cambridge University Press, 1989. Heggie, Douglas C., ed. Archaeoastronomy in the Old World. Cambridge: Cambridge University Press, 1982. Renfrew, Colin, and Paul Bahn, eds. Archaeology: The Key Concepts, 11–16. Abingdon, UK: Routledge, 2005. Ruggles, Clive, ed. Archaeoastronomy in the 1990s. Loughborough, UK: Group D Publications, 1993. Ruggles, Clive. Astronomy in Prehistoric Britain and Ireland, 1–11. New Haven: Yale University Press, 1999. Ruggles, Clive, and Nicholas Saunders, eds. Astronomies and Cultures. Niwot, CO: University Press of Colorado, 1993.

Archaeotopography

One of the criticisms of archaeoastronomy is that archaeoastronomers who investigate the reasons why ancient buildings and monuments were situated and oriented as they are often seem concerned only with the possibility that the main influencing factors were astronomical. But many different considerations, some quite unrelated to astronomy, can determine the orientation of a monument. One possibility is alignment based on prominent topographic features in the surrounding landscape. Accordingly, the term archaeotopography was coined by Michael Hoskin in 1997 to describe the collection of orientation data, as opposed to its (exclusively astronomical) interpretation. However, since the term would seem, similarly, to imply a necessarily topographical interpretation, and since topographical and astronomical motivations are only two among numerous possible reasons for orienting a structure in a particular direction, the term is rather misleading and has not been adopted widely.

See also:

Archaeoastronomy; Cosmology; Orientation.

References and further reading

Belmonte, Juan, and Michael Hoskin. Reflejo del Cosmos, 21–24. Madrid:

Equipo Sirius, 2002. [In Spanish.]

Hoskin, Michael. Tombs, Temples and their Orientations, 13–15. Bognor

Regis, UK: Ocarina Books, 2001.

Astro-Archaeology

This confusing term has sometimes been used as an alternative to archaeoastronomy and sometimes to mean the study of astronomical alignments at ancient monuments—in other words, to represent only a segment of the wider endeavor of archaeoastronomy. It has now largely fallen into disuse, at least among academics working in this area.

See also:

Archaeoastronomy.

References and further reading

Aveni, Anthony F. Skywatchers, 2. Austin: University of Texas Press, 2001.

Ruggles, Clive. Astronomy in Prehistoric Britain and Ireland, 226. New

Haven: Yale University Press, 1999.

Astrology

To a modern astronomer, astrology is anathema. The idea that there can be any direct connection between the configuration or appearance of distant heavenly bodies in the sky and current or future events in the terrestrial world flies in the face of laws of physics that have been established beyond question over many centuries. This is not to deny that in a few cases an astrological relationship might actually have a physical basis: some claim, for example, that a correlation can exist between the growth of plants and the phase of the moon, because the level of moisture in the soil is related to the lunar phase through a tidal effect.