Выбрать главу

Не зря же Андрей Сахаров, демонстрируя однажды свою способность писать зеркально, запечатлел эту формулу научного триумфа. Таким триумфом стало открытие — или, лучше сказать, раскрытие — атома. Сначала, в 1911 году, Эрнест Резерфорд, изучая радиоактивность, экспериментально обнаружил, что атомы в основном состоят из… пустоты. Только самый центр атома, занимающий одну миллиардную его часть, заполнен. Это и есть ядро, вокруг которого на огромных расстояниях движутся электроны, — если ядро увеличить до размеров яблока, то электроны пропорционально удалились бы от яблока-ядра на десяток километров. Это означало, что проблема радиоактивности кроется в ядре и что радиоактивная внутриатомная энергия должна именоваться внутриядерной или просто ядерной. Когда ядро меняет свое состояние, излишки энергии уносят частицы или световое излучение — α-, β- и γ-излучения. Так первые буквы греческого алфавита стали первыми буквами ядерной азбуки.

В 1913 году Нильс Бор разгадал законы, по которым движутся электроны в атоме, — квантовые законы атомной физики. И на этой основе затем объяснил порядок элементов на «полочках» Менделеева. Именно тогда стало ясно, что свойства атома определяются его ядром.

Ядра различаются зарядом и массой. Разные по заряду ядра — химически разные элементы. Одинаковые по заряду, но разные по массе — это химически неотличимые изотопы одного элемента. Самое легкое ядро у водорода — всего одна частица, которую назвали протоном. Самое тяжелое — ядро урана, в котором двести с лишним частиц.

Тут самое время для второй общей формулы научного прогресса: «В сердцевине отгадки — новые загадки». Устройство ядра оказалось загадкой еще более трудной, чем устройство атома. Ведь противоположно заряженные электрон и ядро связаны силой электрического притяжения — силой давно известной и, можно сказать, одомашненной. А что удерживает вместе одноименные заряды ядра? Что преодолевает огромные силы электрического отталкивания в ядре? Ведь эти силы в миллиарды раз больше атомных из-за того, что ядро в 100 тысяч раз меньше атома.

Этот ядерный вопрос до сих пор не получил полного ответа, но один из первых шагов к его решению сделал Игорь Тамм в 1934 году. Незадолго до того экспериментаторы открыли новую частицу — электрически незаряженную, нейтральную и поэтому названную «нейтроном». Во всем, кроме заряда, нейтрон оказался очень похож на протон. Их признали равноправными составляющими ядра и объединили общим названием — нуклон. Уже это решило несколько ядерных головоломок, однако оставался вопрос о силе, связывающей частицы ядра.

Тамм предположил, что связывать протоны и нейтроны ядра может обмен известными легкими частицами (из которых самая известная — электрон) — как будто нуклоны все время перебрасываются мячиками из рук в руки. Это была новая идея. Новая и… неправильная. Тамм сам провел соответствующий расчет, убедился, что сила слишком мала, и опубликовал свой отрицательный результат. По пути, намеченному Таммом, пошел в 1935 году японский теоретик Хидэки Юкава, который не стал заранее назначать частицу, обмен которой связывает нуклоны в ядре. И получил результат — такая частица должна была бы иметь массу в 200 раз больше массы электрона, а поскольку такой частицы никто не наблюдал, грустно заметил он, «изложенная теория находится, по-видимому, на неверном пути»19.

Однако путь был верный. Через два года, в 1937 году, экспериментаторы открыли частицу с такой массой. Ее назвали «мезон», от греческого слова, означающего «промежуточный», — средний по массе между электроном и протоном. Нашли частицу, но не закон ядерного взаимодействия. Физики не догадывались тогда, что путь им предстоит извилистый: найденная частица — не та, которую предсказал Юкава. Убедятся они в этом только через десять лет, когда, к счастью для научного прогресса, тут же найдут «ту» частицу и передадут ей имя «мезон».

А пока — все следующее десятилетие — проблема ядерных сил стояла перед физикой, и все следующее десятилетие Тамм видел эту проблему перед собой.

Игорь Тамм, безработный теоретик

Десятилетие это было самым черным в жизни Тамма. В 1937-м он лишился троих близких ему людей: младшего брата, друга юности и любимого ученика. Почему его самого не объявили врагом народа, понять трудно, но в хаосе Большого террора таких непонятных вещей много. Ясно лишь, что звание члена-корреспондента Академии наук тогда никого не защищало и ядерной физике было еще далеко до стратегической профессии.

Потери Тридцать седьмого повлекли за собой «оргвыводы» — ректор университета «порекомендовал» Тамму подать в отставку с должности заведующего кафедрой теоретической физики. А после ареста в 1938 году сотрудника ФИАНа Руме-ра «приняли меры» и в Академии наук. Из-за «необеспеченности руководства со стороны заведующего отделом [Тамма], недостаточной работы по подготовке кадров» теоротдел закрыли, а его сотрудников распределили по лабораториям20.

Затем мрачные годы войны и эвакуации института в Казань до осени 1943 года. Лишь после возвращения ФИАНа в Москву теоротдел восстановили и Тамм занял свое прежнее место. Труднее было с творческой безработицей — за десятилетие ученый не решил ни одной задачи, сопоставимой с результатами предшествующих лет. Условия военного времени многое могут объяснить, но для страстной натуры Тамма такие объяснения мало что значили — значила бесплодность усилий построить теорию ядерных сил.

К природному энтузиазму Тамма добавлялось то, что в физику он входил в революционное для нее время, когда радикально менялись самые основные ее понятия: пространство, время, причинность. Осуществилась мечта алхимиков — ядерные «алфизики» научились превращать один элемент в другой. Выдающиеся теоретики, начиная с Бора, под впечатлением от удивительных экспериментов и революционного темпа перемен несколько лет даже серьезно обсуждали другую несбыточную мечту — вечный двигатель (но убедились, что это уже чересчур). А Тамму удалось внести вклад в понимание не-элементарности элементарных частиц.

Это теперь ясно, что революционный период в фундаментальной физике закончился в начале 1930-х годов. А поколение, на глазах которого революция совершалась, надолго сохранило революционный азарт. Азартный от рождения Тамм — в особенности. У него, настоящего профессионала, за плечами было семь первоклассных результатов, включая теорию излучения Вавилова — Черенкова (за которую ему предстояло получить Нобелевскую премию). Однако сам он больше всего ценил свою — неправильную в узком смысле — идею 1934 года о механизме ядерных сил. Тогда он имел дело с передним краем физического знания и выдвинутая им идея была шагом за тот край21.

К физике он относился глубоко эмоционально. «В красивую теорию можно влюбиться, как в красивую женщину», — говорил он22. А когда «научный роман» оказывался лишь опьянившей на время страстью, он — опустошенный и несчастный — просил молодых сотрудников «подкинуть какую-нибудь задачку» и называл это «опохмелиться после запоя»23. Последние полтора десятилетия своей жизни он отдался — безответной, увы, — влюбленности в чарующе-прекрасную и смелую идею, обещавшую, казалось ему, фундаментальное продвижение вглубь микромира…

К появлению нового аспиранта Андрея Сахарова ФИАН состоял из семи лабораторий (атомного ядра, колебаний, оптики, люминесценции, спектрального анализа, диэлектриков, акустики) и теоретического отдела. Теоротдел возглавлял Тамм, его заместителем был Виталий Гинзбург, работали старшие научные сотрудники Дмитрий Блохинцев, Моисей Марков, Евгений Фейнберг и академик Владимир Фок (по совместительству), а также восемь докторантов и аспирантов24.

Под руководством Тамма действовал «Большой теоретический коллоквиум», на котором, помимо фиановцев, выступали другие ведущие физики страны, включая Ландау, и собиралась аудитория около трех десятков человек. Темы докладов представляли всю физику: от квантовой теории до расширяющейся Вселенной, от ядерной физики до распространения радиоволн. Однако в самом теоротделе, согласно отчету за 1945 год, «внимание было сосредоточено на проблеме элементарных частиц и их взаимодействия». И эта проблема должна была остаться центральной: «В предстоящей пятилетке Теоретический отдел предполагает в еще большей мере, чем раньше, сконцентрировать свою работу на основных проблемах современной физической теории: теории элементарных частиц и их взаимодействий»25.