Выбрать главу

9

Такое положение дел вполне устраивает университетских донов, в особенности профессоров математики. Среди адвокатов, политиков и бизнесменов бытует мнение, что академическая карьера привлекает в основном людей осторожных, лишенных амбиций, которые главным образом стремятся к устроенной и спокойной жизни. Это наговор. Дон кое-чем жертвует – в частности, возможностью много зарабатывать (профессору редко удается заработать две тысячи фунтов в год), и перспектива получить постоянную профессорскую должность, естественно, эту жертву компенсирует. И все же Хаусман не захотел бы стать лордом Саймоном или лордом Бивербруком[63] не поэтому. От их карьеры он отказался бы из честолюбия – чтобы не стать человеком, о котором через двадцать лет никто не вспомнит.

Тем не менее больно сознавать, что даже при всех вышеперечисленных преимуществах математик не застрахован от забвения. Помню, Бертран Рассел однажды рассказал мне о своем страшном сне. Будто стоит он году эдак в 2100 нашей эры на верхнем этаже университетской библиотеки, а вдоль рядов, с огромной корзиной, ходит библиотекарь. Одну за другой он берет с полок книги, недолго вертит каждую в руках и либо возвращает ее на полку, либо кидает в корзину. Наконец он подходит к трехтомнику, в котором Рассел узнает последний сохранившийся экземпляр «Principia mathematica»[64]. Библиотекарь вынимает один из томов, бегло просматривает несколько страниц, явно озадаченный непонятными символами, захлопывает книгу и застывает в нерешительности…

10

Математик, подобно художнику или поэту, создает образы, причем математические образы сохраняются дольше, потому что всегда несут в себе идею. Художник использует формы и цвет, поэт – слова. Если в картине и присутствует некая «идея», то она, как правило, обыденна и не столь важна сама по себе. В поэзии идеи значат чуть больше; но, как заметил Хаусман, роль идей в стихах обычно сильно преувеличена: «Я не верю в поэтические идеи… В поэзии главное – не то, что сказано, а то, как это выражено».

Не смыть всем водам яростного моряСвятой елей с монаршего чела[65].

Можно ли представить себе более совершенные строки и при этом более банальную и ложную идею? Несостоятельность идей едва ли умаляет красоту их словесного воплощения. У математика же нет ничего, кроме идей, потому-то его образы и долговечнее, ибо со временем идеи изнашиваются меньше, чем слова.

Математические образы, подобно творениям поэтов или художников, обязаны быть красивыми; идеи, равно как цвета или слова, должны гармонично сочетаться между собой. Красота – это первый критерий: для нескладной, уродливой математики в мире просто нет места. В этом я категорически не согласен с распространенным (пусть и в меньшей степени, чем двадцать лет назад) ошибочным убеждением, которое Уайтхед назвал «литературным суеверием»: мол, что восхищение и эстетическое наслаждение математикой есть «мономания, свойственная в каждом поколении лишь горстке эксцентриков».

В наши дни трудно встретить образованного человека, невосприимчивого к эстетическому очарованию математики. Другое дело – дать ему определение. Но то же относится к любой красоте – мы вряд ли сможем точно сформулировать, в чем красота стихотворения, однако безошибочно узнаем ее присутствие. Даже профессор Хогбен[66], при любой возможности умаляющий важность эстетических свойств математики, не осмеливается отрицать их наличие. «Не спорю, у редких индивидов математика способна вызвать прохладное, отстраненное восхищение… Для этих избранных эстетическая прелесть математики вполне реальна». Он называет таких людей «редкими», а их чувства «прохладными» (то есть это чудаки, которые живут в крошечных университетских городках, укрытых от свежего ветра открытых просторов). Тем самым он попросту вторит «литературному суеверию» Уайтхеда.

вернуться

63

 Лорд Саймон, Джон Олбрук (1873–1954) – министр иностранных дел Великобритании с 1931 по 1935 г. Лорд Бивербрук, Уильям Максуэл (1879–1964) – член правительства Великобритании в 1918 и 1940–1945 гг., газетный магнат.

вернуться

64

 «Принципы математики», или «Начала математики» – трехтомная монография по логике и философии математики Альфреда Уайтхеда и Бертрана Рассела, изданная в 1910, 1912 и 1913 годах.

вернуться

65

 Строки из пьесы «Ричард II» Уильяма Шекспира в переводе М. Донского.

вернуться

66

 Ланселот Томас Хогбен (1895–1975) – английский ученый, биолог, создатель искусственного языка интерглосса.