На самом же деле существует мало более «популярных» наук, чем математика. Большинство людей способны оценить прелесть математики точно так же, как получить удовольствие от приятной мелодии; может статься, даже больше людей интересуется математикой, чем музыкой. А тому, что на поверхности все выглядит как раз наоборот, нетрудно найти объяснение. Музыку, в отличие от математики, можно использовать с целью вызывать коллективные эмоции; к тому же отсутствие музыкальных талантов не считается (и правильно) чем-то постыдным. В то же время слово «математика» нагоняет на людей такой страх, что они совершенно искренне спешат заверить каждого в своей математической некомпетентности.
Не требуется большого ума, чтобы доказать абсурдность «литературного суеверия». В любой цивилизованной стране найдется масса любителей шахмат – в России в них играет почти все образованное население, и каждый игрок способен распознать и оценить «красоту» партии или комбинации. При этом любая шахматная комбинация – не что иное, как чисто математическое упражнение (чего не скажешь о партии, где обязательно замешана еще и психология). Поэтому тот, кто ценит «красоту» разыгранной комбинации, на самом деле воздает должное красоте математики, пусть красота эта и не такая уж возвышенная. Каждый шахматный поединок – это апофеоз математики.
На более приземленном уровне, зато для более широкой публики, о том же свидетельствует игра в бридж или, на совсем уж обывательском уровне, головоломки в ежедневной газете. Главная причина их невероятной популярности – в притягательной силе элементарной математики, и лучшие создатели головоломок, такие как Дьюдени или Калибан[67], ничего другого и не используют. Они хорошо знают свое дело, ведь публике нужен интеллектуальный «пинок», и ничто так не подстегивает ум, как математика.
Еще я бы добавил, что даже известные личности (включая тех, кто привык с пренебрежением отзываться о математике) ничему так не рады, как открытию – впервые или заново – подлинной математической теоремы. Герберт Спенсер[68] в своей автобиографии переиздал теорему об окружностях, которую доказал в двадцать лет (не ведая, что ее двумя тысячами лет ранее доказал Платон). А более недавний и более поразительный пример – профессор Содди[69] (чья теорема действительно принадлежит ему)[70].
11
Шахматная задача – самая настоящая, но при этом как бы «несущественная» математика. Какими бы гениальными и хитрыми, оригинальными или неожиданными ни были ходы, им не хватает главного. Шахматные задачи не важны. Лучшая математика не просто красива, но и серьезна – «важна», если угодно, хотя это очень неоднозначное слово, а «серьезна» куда точнее выражает мою мысль.
Я не имею в виду «практическую» пользу от математики; к этой теме я еще вернусь. А пока замечу, что если шахматная задача, грубо говоря, «бесполезна», то такова, по большому счету, и математика: лишь малая ее часть находит применение на практике, причем часть относительно неинтересная. «Серьезность» теоремы определяется не ее практическими последствиями, которых ничтожно мало, а значимостью соединенных в ней математических идей. Говоря обобщенно, математическая идея «значима», если она логично и понятно связывает между собой множество других математических идей. Таким образом, серьезная теорема – та, что связывает значимые идеи, – наверняка повлечет за собой прогресс как в самой математике, так и в других науках. Ни одна шахматная задача не повлияла на развитие научной мысли, тогда как Пифагор, Ньютон и Эйнштейн, каждый в свое время, полностью изменили ее ход.
Серьезность теоремы заключается, конечно, не в ее влиянии – последнее лишь подтверждает ее серьезность. Шекспир оказал громадное воздействие на развитие английского языка, Отуэй[71] – практически никакого, и все-таки это не та причина, по которой Шекспир лучше как поэт. Он лучше потому, что писал гораздо лучшие стихи. Более низкое положение шахмат, как и поэзии Отуэя, объясняется не их влиянием, а их содержанием.
Есть еще один аспект, которого я коснусь лишь вскользь – не потому, что он неинтересен, а потому, что сложен. К тому же у меня нет должной квалификации, чтобы всерьез рассуждать об эстетике. Красота математической теоремы во многом зависит от ее серьезности; даже красота стихотворной строки может в какой-то мере зависеть от значимости выраженной в ней идеи. Я уже приводил две строки Шекспира как пример чисто словесной красоты, и все же строка:
67
Генри Э. Дьюдени (1857–1930) – английский математик, составитель знаменитых логических и математических головоломок. Калибан – псевдоним британского экономиста, журналиста, радиоведущего, игрока в бридж и составителя задач и головоломок Губерта Филипса (1891–1964).