Выбрать главу

Воспользуемся вновь reductio ad absurdum: предположим, что (B) верно для целых a и b, не имеющих общего делителя. Из (B) следует, что a2 – четное число (поскольку 2b2 заведомо делится на 2), а значит, и само a тоже четное (ведь квадрат нечетного числа всегда число нечетное). Если а – четное, тогда соотношение

(C) a = 2c

верно для некоего целого с; и следовательно,

2b2= a2= (2c)2= 4c2

или

(D) b2= 2c2.

Получается, что b2 четное, следовательно (по вышеуказанной причине), b тоже четное. Таким образом, a и b оба числа четные и, стало быть, имеют общий делитель 2. Этот вывод противоречит нашей исходной гипотезе, то есть гипотеза неверна.

Из теоремы Пифагора следует, что диагональ квадрата несоизмерима с его стороной (иными словами, их соотношение не является рациональным числом и ни в каких единицах измерения не имеет общего целого множителя). Если принять сторону квадрата за единицу длины, а длину диагонали обозначить как d, то по другой известной теореме, также приписываемой Пифагору[78], мы получим:

d  2= 12+ 12= 2,

а значит, d не может быть рациональным числом.

Я мог бы привести сколько угодно примеров красивейших теорем из теории чисел, смысл которых понятен каждому. Например, существует так называемая «основная теорема арифметики», согласно которой любое целое можно лишь одним-единственным способом разложить на простые множители. То есть 666 = 2 × 3 × 3 × 37, и никак иначе. Такие комбинации, как 666 = 2 × 11 × 29 или 13 × 89 = 17 × 73, невозможны (что очевидно и без перемножения). Как следует из ее названия, эта теорема – основа высшей арифметики, однако ее доказательство, хоть и не такое уж «сложное», требует немало предварительных пояснений и может утомить далекого от математики читателя.

Другая знаменитая и очень красивая теорема – теорема Ферма «о двух квадратах». Простые числа (за исключением особенного числа 2) можно разделить на два класса; те, что при делении на 4 дают остаток 1:

5, 13, 17, 29, 37, 41, …,

и те, что дают остаток 3:

3, 7, 11, 19, 23, 31…

Все простые числа первого класса, в отличие от чисел второго класса, можно представить как сумму квадратов двух целых чисел, например:

5 = 12+ 22, 13 = 22+ 32,

17 = 12+ 42, 29 = 22+ 52,

а 3, 7, 11 и 19 в таком виде непредставимы (что читатель может легко проверить сам). Это и есть теорема Ферма, которая по праву принадлежит к вершинам арифметического изящества. К сожалению, ее доказательство способны понять лишь довольно опытные математики.

Прекрасные примеры существуют и в теории множеств (Mengenlehre), такие как теорема Кантора о «несчетности» континуума. Здесь трудность как раз обратная. Владея соответствующей терминологией, понять доказательство достаточно просто, а вникнуть в смысл самой теоремы невозможно без дополнительных подробных объяснений. Поэтому я воздержусь от дальнейших примеров. Пусть те, что я привел выше, послужат проверкой: читатель, которого они не впечатлили, навряд ли оценит вообще что-либо в математике.

Как я уже говорил, математик создает образы из идей, а критериями оценки этих образов являются их красота и серьезность. Не могу себе представить, чтобы человек, понявший две приведенные теоремы, усомнился бы в том, что они удовлетворяют обоим критериям. Эти теоремы очевидно превосходят гениальнейшие из головоломок Дьюдени и выдающиеся розыгрыши величайших гроссмейстеров как по серьезности, так и по красоте. Давайте разберемся, в чем же конкретно заключается их превосходство?

14

Прежде всего теоремы имеют явное и подавляющее превосходство в серьезности. Шахматная задача – результат довольно ограниченного набора замысловатых идей, по сути мало чем отличающихся друг от друга и не имеющих далекоидущих последствий. Не будь шахмат, люди мыслили бы так же, тогда как теоремы Евклида и Пифагора глубоко повлияли на наше мышление далеко за пределами математики.

вернуться

78

 Евклид «Начала», книга I, 47. – Примеч. авт.