Выбрать главу

Например, на теореме Евклида держится вся арифметика. Простые числа – как строительный материал, и теорема Евклида гарантирует, что этого ресурса нам хватит для решения всех арифметических задач. А вот область применения теоремы Пифагора гораздо шире, и сформулирована она гораздо лучше.

В первую очередь следует заметить, что доказательство Пифагора можно сильно обобщить и, чуть изменив подход, применить к весьма широкому классу «иррациональных чисел». Похожим образом легко доказать (как это сделал Феодор[79]), что

иррациональные числа или (идя дальше Феодора) что  и  тоже иррациональны[80].

Теорема Евклида гарантирует, что мы располагаем достаточным количеством строительного материала для создания полноценной арифметики целых чисел. А теорема Пифагора и ее следствия показали, что такой арифметикой нам не обойтись, так как существует множество достойных внимания величин, измерить которые в целых числах нельзя; диагональ квадрата – лишь самый очевидный тому пример. Древнегреческие математики сразу же осознали фундаментальность этого открытия. И тогда они предположили (видимо, согласно «естественным» законам «здравого смысла»), что все однородные величины соизмеримы, то есть что любые две длины, например, кратны какой-то одной общей величине, и на основе этого предположения выстроили теорию пропорций. Однако доказательство Пифагора выявило несостоятельность этого допущения и привело к созданию куда более фундаментальной теории Евдокса[81], изложенной в пятой книге «Начал» и до сих пор признаваемой многими учеными высшим достижением древнегреческой математики. Теория эта на удивление современна по духу и может рассматриваться как предвестник теории иррациональных чисел, которая произвела революцию в математическом анализе и оказала сильное влияние на современную философию.

Таким образом, в «серьезности» обеих теорем нет никаких сомнений. А потому тем более следует отметить, что ни одна из них не имеет ни малейшей «практической» значимости. Для практических применений нам достаточно сравнительно малых чисел. С «большими» числами имеют дело разве что звездная астрономия да атомная физика, но от них как таковых практической пользы ненамного больше, чем от чистой, абстрактной математики. Не знаю, какова высшая степень точности, когда-либо пригодившаяся инженеру, – пожалуй, десять знаков после запятой уже довольно щедрое преувеличение. Тогда число 3,14159265 (значение π с точностью до восьми знаков после запятой) представимо в виде соотношения:

двух девятизначных чисел. Количество простых чисел, не превышающих 1 000 000 000, равно 50 847 478. Для инженера этого вполне достаточно. Он прекрасно обходится теоремой Евклида. А что касается теоремы Пифагора, очевидно, что иррациональные числа инженера не интересуют, потому что он имеет дело только с величинами приближенными, а все приближенные значения рациональны.

15

Поскольку теорема считается «серьезной», если содержит «значимые» идеи, пожалуй, мне стоит попытаться конкретизировать те признаки, которые определяют значимость математической идеи. Задача весьма трудная, и навряд ли мой анализ будет очень уж ценным. В принципе, глядя на теорему, можно сразу определить «значимость» заложенных в ней идей, как в случае двух приведенных выше теорем. Однако это предполагает достаточно высокий уровень математических знаний и такое понимание математических идей, которое наступает лишь после многих лет знакомства с ними. Поэтому я все же попытаюсь провести анализ и сделать это так, чтобы мои доводы, какими бы неубедительными они ни были, выглядели логичными и понятными. Во всяком случае два свойства представляются мне наиболее существенными: достаточная обобщенность и достаточная глубина – увы, оба качества не имеют точных определений.

Итак, значимая математическая идея (и, соответственно, серьезная теорема) должна обладать определенной степенью обобщенности; то есть быть составляющей многих математических конструкций и входить в доказательства различных теорем. Серьезная теорема, как бы узко она ни была сформулирована изначально (как теорема Пифагора), должна позволять достаточно широкие обобщения и представлять целый класс теорем подобного рода. Отношения, выявленные в ходе ее доказательства, должны связывать различные математические идеи. Все это неконкретно и требует немалых пояснений. С другой стороны, теорему, явно лишенную этого качества, с легкостью можно отнести к несерьезным. Об этом свидетельствуют отдельно стоящие любопытные казусы, которых в арифметике предостаточно. Приведу лишь два таких примера, взятых наобум из «Математических эссе и развлечений» Роуза Болла[82].

вернуться

79

 Феодор Киренский (конец V – начало IV в. до н. э.) – древнегреческий ученый, известный как учитель Платона. Здесь речь о так называемой «спирали Феодора» (она же спираль квадратного корня из угла) – приближении к архимедовой спирали, состоящем из примыкающих друг к другу прямоугольных треугольников.

вернуться

81

 Евдокс Книдский (ок. 408 – ок. 355 до н. э.) – древнегреческий математик и астроном. – Примеч. авт.