Выбрать главу

Второе преимущество телескопа по сравнению с глазом заключается в том, что телескоп собирает гораздо больше света, чем зрачок человеческого глаза, имеющий даже в полной темноте диаметр не больше 8 мм. Очевидно, что количество света, собираемого телескопом, во столько раз больше того количества, которое собирает глаз, во сколько площадь объектива больше площади зрачка. Иначе говоря, это отношение равно отношению квадратов диаметров объектива и зрачка.

Собранный телескопом свет выходит из его окуляра концентрированным световым пучком. Наименьшее его сечение называется выходным зрачком[5]. В сущности, выходной зрачок — это изображение объектива, создаваемое окуляром. Можно доказать, что увеличение телескопа (то есть увеличение угла зрения по сравнению с невооруженным глазом) равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра. Казалось бы, увеличивая фокусное расстояние объектива и уменьшая фокусное расстояние окуляра, можно достичь любых увеличений. Теоретически это так, но практически все выглядит иначе. Во-первых, чем больше употребляемое в телескопе увеличение, тем меньше его поле зрения. Во-вторых, с ростом увеличения становятся все заметнее движения воздуха. Неоднородные воздушные струи размазывают, портят изображение и иногда то, что видно при малых увеличениях, пропадает для больших. Наконец, чем больше увеличение, тем бледнее, тусклее изображение небесного светила (например, Луны). Иначе говоря, с ростом увеличения хотя и видно больше подробностей на Луне, Солнце и планетах, но зато уменьшается поверхностная яркость их изображений. Есть и другие препятствия, мешающие применять очень большие увеличения (например, в тысячи и в десятки тысяч раз). Приходится искать некоторый оптимум и потому даже в современных телескопах, как правило, наибольшие увеличения не превосходят нескольких сотен раз.

При создании телескопов со времен Галилея придерживаются следующего правила: выходной зрачок телескопа не должен быть больше выходного зрачка наблюдателя. Легко сообразить, что в противном случае часть света, собранного объективом, будет напрасно потеряна. Очень важной величиной, характеризующей объектив телескопа, является его относительное отверстие, то есть отношение диаметра объектива телескопа к его фокусному расстоянию. Светосилой объектива называется квадрат относительного отверстия телескопа. Чем «светосильнее» телескоп, то есть чем больше светосила его объектива, тем более яркие изображения объектов он дает. Количество же света, собираемого телескопом, зависит лишь от диаметра его объектива (но не от светосилы!). Из-за явления, именуемого в оптике дифракцией, при наблюдениях в телескопы яркие звезды кажутся небольшими дисками, окруженными несколькими концентрическими радужными кольцами. Разумеется, к настоящим дискам звезд дифракционные диски никакого отношения не имеют.

В заключение сообщим читателю основные технические данные о первых галилеевских телескопах. Меньший из них имел диаметр объектива 4 см при фокусном расстоянии 50 см (его относительное отверстие было равно 4/50 = 0,08). Он увеличивал угол зрения всего в три раза. Второй, более совершенный телескоп, с помощью которого Галилей совершил свои великие открытия, имел объектив диаметром 4,5 см при фокусном расстоянии 125 см и давал увеличение в 34 раза. При наблюдениях в этот телескоп Галилей различал звезды до 8-й звездной величины, то есть в 6,25 раз более слабые, чем те, которые еле видит на ночном небе невооруженный глаз.

Таково было скромное начало развернувшегося позже «чемпионата» телескопов — длительной борьбы за усовершенствование этих главных астрономических инструментов.

Динозавры телескопической техники

До сих пор, рассуждая о ходе световых лучей в телескопе, мы считали эти лучи идеальными геометрическими прямыми, а точки их схождения — идеальными математическими точками. В действительности все обстоит гораздо сложнее. Прежде всего астрономам приходится сталкиваться с так называемой дифракцией света (подробнее см. стр. 110). Суть же этого явления заключается в следующем.

Представьте себе поток световых лучей, падающих на объектив телескопа. Плоскость, перпендикулярную к направлению лучей, назовем фронтом световой волны. Согласно так называемому принципу Гюйгенса каждую точку фронта волны можно рассматривать как самостоятельный источник света, посылающий лучи во все стороны. Принимая этот принцип, можно доказать, что изображение звезды, создаваемое телескопом, никогда не будет точечным, как того требуют законы «идеальной» геометрической оптики. Оно, это изображение, выглядит светлым кружочком, окруженным несколькими концентрическими кольцами, причем с удалением от изображения звезды яркость дифракционных колец быстро уменьшается, а ширина возрастает.

вернуться

5

У галилеевской трубы выходного зрачка нет.