Выбрать главу

На сетевом уровне под объектом понимается сетевой адрес хоста или роутера. На этом уровне каждый объект может взаимодействовать с любым другим объектом РВС при помощи однонаправленной или двунаправленной линии связи сетевого уровня lsij, соединяющей i-объект с j-объектом.

Введем два правила.

Во-первых, все объекты внутри одного подмножества Xk (сегмента) всегда связаны между собой физически, но не всегда соединены канальными линиями связи, а следовательно, на данном уровне все объекты потенциально могут быть связаны друг с другом линией канального уровня, но могут быть и не связаны.

Во-вторых, путь на K-ом уровне модели OSI между двумя объектами РВС существует тогда и только тогда, когда он существует на всех уровнях от 1 до K – 1, где 1 < K ≤ 7. Исключением является случай, когда между двумя объектами из одного подмножества (сегмента) Xk нет пути на канальном уровне, но существует путь на сетевом (широковещательный сетевой запрос (например, ARP), который получат все объекты в данном сегменте).

Согласно предлагаемой модели:

X = {xi | i = 1..M} – множество хостов;

G = {gj | j = M + 1..N} – множество роутеров;

KS = {kskL | k = 1..N, L = 1..N } – множество линий связи объектов на физическом или канальном уровне OSI; kskL – линия связи k-го объекта с объектом L;

LS = {lskL | k = 1..N, L = 1..N} – множество линий связи объектов на сетевом уровне OSI; lskL – линия связи k-го объекта с объектом L;

Xk = {xp | p = 1..M} – подмножество хостов внутри одного сегмента;

KSk = {kskL | k = 1..M, L = 1..M} – подмножество линий связи объектов на физическом или канальном уровнях внутри одного сегмента;

SEG = {Xk, Gm+k, KSk | k = 1..N – (M + 1), m = 1..M} – множество сетевых сегментов с линиями связи физического или канального уровня.

Объединение множеств RVSk = Xk ∪ KSk ∪ G ≡ SEG образует модель взаимодействия объектов распределенной ВС в проекции на физический или канальный уровень модели OSI (рис. 3.2).

Рис. 3.2. Графовая модель взаимодействия объектов РВС в проекции на физический или канальный уровень модели OSI

Объединение множеств RVSs = X ∪ G ∪ LS образует модель взаимодействия объектов распределенной ВС в проекции на сетевой уровень модели OSI (рис. 3.3).

Рис. 3.3. Графовая модель взаимодействия объектов РВС в проекции на сетевой уровень

Объединение множеств RVS = RVSk ∪ RVSs образует модель взаимодействия объектов распределенной ВС в проекции на физический (или канальный) и сетевой уровни модели OSI (рис. 3.4).

Рис. 3.4. Графовая модель взаимодействия объектов РВС в проекции на физический и сетевой уровни модели OSI

Моделирование механизмов реализации типовых угроз безопасности РВС

1. Анализ сетевого трафика

Основной особенностью РВС, как отмечалось выше, является то, что ее объекты распределены в пространстве и связь между ними осуществляется физически (по сетевым соединениям) и программно (при помощи механизма сообщений). При этом все управляющие сообщения и данные, пересылаемые между объектами РВС, передаются по сетевым соединениям в виде пакетов обмена. Эта особенность привела к появлению специфичной для распределенных ВС типовой угрозы безопасности, заключающейся в прослушивании канала связи. Назовем данную типовую угрозу безопасности РВС «анализ сетевого трафика» (sniffing), сокращенно – «сетевой анализ».

Реализация угрозы «сетевой анализ» позволяет, во-первых, изучить логику работы распределенной ВС, то есть получить взаимно однозначное соответствие событий, происходящих в системе, и команд, пересылаемых друг другу ее объектами, в момент появления этих событий. Это достигается путем перехвата и анализа пакетов обмена на канальном уровне. Знание логики работы распределенной ВС позволяет на практике моделировать и осуществлять типовые удаленные атаки, рассмотренные ниже, на примере конкретных РВС.