Выбрать главу

Ракета «Ланс» имела цилиндрические несущие топливные баки, размещенные последовательно. После заправки топлива баки герметизировались и запаивались. В переднем баке (бак горючего) содержался несимметричный диметилгидразин, в заднем (бак окислителя) — красная дымящая азотная кислота. Компоненты топлива разделялись промежуточным днищем. Такая конструкция обеспечивала длительное хранение ракеты в заправленном состоянии и безопасность эксплуатации. В каждом баке имелись тарельчатые поршни. В центре бака окислителя через поршень проходил трубопровод горючего. По оси бака горючего располагался газогенератор, и поршень при движении скользил по его корпусу. После воспламенения порохового заряда газогенератора образовавшиеся горячие газы заполняли запоршневые пространства в баках горючего и окислителя. Под действием газа поршни давили на компоненты топлива. Последние прорывали герметизирующие мембраны и поступали в двигатель, где самовоспламенялись. Поршни имели специальные уплотнения, предотвращавшие соединение газа с компонентами топлива.

Горючее — несимметричный диметилгидразин — представляет собой бесцветную прозрачную жидкость с резким запахом. По сравнению с гидразином он обладает худшей эффективностью как горючее. Однако по сравнению с гидразином он удобнее в эксплуатации, так как остается жидкостью в большом интервале температур. Несимметричный диметилгидразин обладает хорошей стойкостью при нагревании. Он химически активен и легко окисляется. При хранении не должен соприкасаться с воздухом. По отношению к металлам чистый несимметричный диметилгидразин неагрессивен и допускает длительное хранение в емкостях. Однако наличие воды приводит к коррозии алюминия и его сплавов. Несимметричный диметилгидразин очень ядовит, вызывает поражение легких, печени и крови. Температура кипения +63 °C, температура затвердевания -57 °C.

Окислитель — азотная кислота. Вследствие высокой теплоемкости может использоваться в качестве охлаждающего компонента камеры жидкостного реактивного двигателя. Главный недостаток азотной кислоты — ее высокая химическая активность по отношению к большинству материалов. В результате коррозии разъедается металл емкости хранения, а на дне образуется студенистый осадок, который может засорять трубопроводы. В качестве конструкционных материалов для хранения азотной кислоты могут использоваться алюминий и его сплавы, нержавеющие хромистые и хромоникелевые высоколегированные стали. Температура кипения +8б°С, температура затвердевания -42 °C.

Двигатель ракеты «Ланс» имел две камеры: маршевую и стартовую (первая внутри второй). На начальном участке траектории работали обе камеры (фаза ускорения). При достижении заданной скорости ракеты срабатывались два пиротехнических клапана, подача горючего и окислителя в стартовую камеру прекращалась, и она выключалась. Стартовую камеру называли также «пяти-кольцевым» двигателем, так как в ней имелось пять кольцевых коллекторов для подачи топлива (три для окислителя, два для горючего). Тяга маршевой камеры двигателя при полете ракеты могла изменяться от максимального значения до нуля.

Система подачи топлива (силовая установка) служила для подачи компонентов топлива в камеру. На ракете «Ланс» MG-M52C применялась вытеснительная система подачи топлива, Преимущество вытеснительной системы над нагнетательной состоит в дом, что она обладает меньшей суммарной массой и компактностью по сравнению с нагнетательной системой подачи,

В состав системы подачи топлива входили твердотопливный газогенератор, пусковые и отсечные клапаны, мембраны и другие устройства. В запоршневые пространства баков над уровнем топлива вводилось газообразное рабочее тело, которое вырабатывало газогенератор (производился наддув баков). Оказывая давление на поршни, газ тем самым вытеснял компоненты из баков. В центре бака окислителя через поршни проходил трубопровод горючего. По оси бака горючего расположен газогенератор, и поршень при движении скользил по его корпусу. Поршни имели специальные уплотнения, предотвращающие соединение газа с компонентами топлива. Повышенное давление в топливных баках позволяло избежать кавитации, а также разгрузить тонкостенную оболочку баков, на которую в полете действовали сжимающие силы, обусловленные действием встречного потока воздуха. Стабильность работы жидкостного ракетного двигателя обеспечивалась регуляторами, которые поддерживали требуемое значение тяговых характеристик.

Система управления была разработана специально для ракеты «Ланс». На момент принятия ракеты на вооружение она была неуязвимой для всех известных электронных средств противодействия. Система управления ракеты «Ланс» AN/DJW-48 (ХО-1) упрощенная инерциальная. Она состояла из подсистем, из которых главные — автомат контроля направления и скорости (DC), автомат компенсации воздействия метеорологических факторов («Automet») и источники электропитания. Также к системе управления можно отнести устройство раскрутки ракеты, которое служило для придания продольной устойчивости (контур стабилизации угла крена). Устройство для раскрутки ракеты находилось в плоскости ее центра тяжести.

Сопла устройства раскручивали ракету в течение первых 1,5 секунды после пуска ракеты. В дальнейшем вращение ракеты поддерживалось с помощью четырех косорасположенных хвостовых стабилизаторов. Контроль направления и скорости полета ракеты с помощью подсистемы DC осуществлялся ка начальном участке во время работы стартовой камеры. Для удержания ракеты на заданном направлении при прицеливании в подсистеме DC использовался гироскоп. Во время работы стартовой камеры заданное положение ракеты поддерживалось с помощью четырех управляющих клапанов типа «открыт-закрыт» системы управления вектором тяги, расположенных под углом 90° по окружности в стартовой камере двигателя.

Подобно рулям, корректирующим отклонения в направлении полета ракеты, клапаны по командам от подсистемы DC управляли впрыском горючего в стартовую камеру, благодаря чему возникали боковые силы, изменяющие направление вектора тяги. Стартовая камера двигателя работала в течение 1,5–6 секунд. Ее выключение осуществлялось по команде акселерометра, когда скорость ракеты достигнет заданной величины. После этого полетом ракеты и работой маршевой камеры двигателя управляла подсистема «Automet».

Работа маршевой камеры регулировалась таким образом, что в каждый момент ее тяга была равна силе лобового сопротивления, действующей на ракету. Во время полета ракеты подсистема Automet автоматически компенсировала воздействие ветра, изменение плотности воздуха и других метеорологических факторов.

Источники питания обеспечивали электроэнергией приборы на борту ракеты. В состав подсистемы электропитания ракеты входили две аккумуляторные батареи и электронный блок распределения энергии. В отсеке системы управления находился также таймер. Он давал команду на срабатывание пиротехнического клапана, прекращавшего подачу газа в устройство раскрутки ракеты.

В зависимости от типа применяемой головной части на ракете использовались два вида стабилизаторов. Большие стабилизаторы сотовой конструкции из алюминия весом 34,7 кг применялись при пусках ракет с ядерной головной частью, а при пусках ракет с тяжелой неядерной головной частью крепились алюминиевые стабилизаторы меньших размеров и весом 28,8 кг.

В ракетах «Лаке» использовалась боевая часть М-234 с ядерной боевой частью W-70. Длина 1025 мм, диаметр 450 мм, вес 123,5 кг.

Модификации ядерной боевой части Мод, 0, Мод. 1 и Мод. 2 производились с июня 1973 г, по июль 1977 г. Всего было изготовлено 909 боевых частей.

Ядерная боевая часть W-70 Мод. 3 представляла собой нейтронную бомбу мощностью 1 кт с повышенным выходом излучения. С августа 1981 г. по февраль 1983 г. изготовлено 380 нейтронных боевых частей к ракетам «Ланс».

Самоходная пусковая установка гусеничная, плавающая, создана на базе гусеничного транспортера М113А1. Вес пусковой установки с ракетой, снаряженной ядерной головной частью, 9075 кг, а с неядерной головной частью — 9298 кг. Длина пусковой установки 6,568 м, ширина 2,709 м, высота по кузову 2,279 м, по кабине 2,715 гл. Двигатель 6V53 дизельный.