Выбрать главу

Ещё больше поражают воображение успехи отечественных инженеров-самоучек, таких как Кулибин, Циолковский, которые, не имея ни образования, ни поддержки, на собственные средства строили технику будущего и буквально в домашних условиях открывали сложные физические законы. Так, великий русский механик И.П. Кулибин (вероятный прообраз лесковского Левши) смог на основе собственных опытов и наблюдений ещё в XVIII веке глубоко вникнуть в законы физики, химии, механики, сопромата, построив уникальные машины и сооружения, долгое время не имевшие аналогов. Среди них — не только непревзойдённые микроскопы, телескопы, механические игрушки-часы, электрические машины и микроавтоматы, но и рабочие модели мостов, самодвижущихся судов и повозок. На век опередили развитие оптической техники гигантские проекторы и прожекторы Кулибина, его пиротехнические устройства, для создания которых требовалось виртуозное владение законами оптики, баллистики и химии. Несмотря на это, вклад в науку и технику Кулибина, так же как вклад Циолковского, — фигур сопоставимых с Архимедом, Героном и Леонардо, до сих пор недооценён. Их живые новаторские идеи, направленные на облегчение труда, на процветание человечества, на службу народу, глушились жрецами академической науки, по большей части — мёртвой и в практическом плане бесполезной.

Зато инженеры первыми с готовностью воспринимали смелые новые идеи этих и других мыслителей, начинали разрабатывать и применять их на практике. Вот что пишет, к примеру, о К.Э. Циолковском А. Космодемьянский: "Многие учёные его не понимали. Он публиковал свои статьи в журналах, редко привлекавших внимание официально признанных научных деятелей. Его больше знали инженеры-изобретатели, люди чуткие к новому, неожиданному. В конце XIX в. и первой четверти XX в. для большинства учёных был неактуален сам предмет основных исследований Константина Эдуардовича. С «общего согласия» боевые пороховые ракеты были похоронены в 80-х годах XIX столетия" [69, с. 175]. Отметим, что то же самое в полной мере справедливо и в отношении баллистической теории и ритцевой электродинамики, вместе со всей классической наукой, похороненной в начале XX в. И хотя заслуги Циолковского и перспективность ракет были в итоге доказаны и признаны, всё равно с тех пор так ничего и не изменилось. До сих пор умалчивают о работах Циолковского по космологии и фундаментальным вопросам физики. До сих пор на страницы научных журналов не допускают статьи по классической трактовке "неклассических" эффектов. И потому самыми продвинутыми и смело мыслящими по-прежнему оказываются инженеры, первыми воспринявшие идеи Ритца.

Говоря о Ритце и инженерах, стоит отметить интересную деталь: можно сказать, что на любом чертеже незримо присутствует имя Ритца. Дело в том, что широко распространённое на чертежах обозначение неровности, шероховатости Rz (со значком √¯ и соответствующим числовым индексом) происходит как раз от немецкого слова Ritz, что значит "царапина, трещина" (отсюда же и слово риска). Имя Ритца и его идеи, действительно, стали неприятной царапиной, задориной на казавшемся столь идеально прилизанном монументе теории относительности и квантовой механики. Ритц предлагал прямой, но, для иных, — тернистый, неровный, задористый путь. Поэтому учёные всячески старались изгладить его имя и идеи из научной литературы и памяти человечества (как уже однажды сделали с трудами Демокрита). Слишком неудобной оказалась правда о Ритце. Но получилось всё наоборот: царапина стала разрастаться в трещину, которая неотвратимо расколет монумент неклассической физики, а затем приведёт к его полному краху. Тогда на смену абстрактной модели мира придёт рабочая инженерно-механистическая модель Ритца.

Полную противоположность учёным-инженерам составляют учёные-теоретики, не умеющие мыслить творчески, конструктивно, наглядно, а потому не чувствующие природу. Яркий тому пример — техническая и механическая безграмотность Аристотеля, предпочитавшего умозрительный стиль исследований, презиравшего физический труд и опыт, грубую материю, а потому создавшего нематериалистическую теорию. Аристотель терпеть не мог наглядных, всем понятных моделей (таких как атомы Демокрита), а потому презирал геометрию и упрекал своего учителя Платона за геометрические занятия, идущие в ущерб абстрактной философии. Так же и Эйнштейн, предпочитавший реальному — мысленный эксперимент, был механически безграмотен, органически не способен к ощущению законов природы, механическому и наглядно-геометрическому моделированию. Это демонстрирует хотя бы пример того, как Эйнштейн теоретически рассчитал оптимальную форму профиля крыла самолёта. В итоге получилось нечто уродливо-извращённое — самолёт с непрямым, изогнутым горбообразным крылом, — и здесь Эйнштейн пошёл по пути кривды. Потому и самолёт этот при испытаниях показал себя с худшей стороны и чуть не разбился [58, 73].