Выбрать главу
ПОСЛЕДСТВИЯ

На этом мы закончим разговор о статье 1874 года. Но в чем же заключались ее революционные последствия, которые Вейерштрасс посоветовал скрыть?

Вернемся к диагональному методу: с его помощью было доказано, что попытка установить взаимно однозначное соответствие между множествами простых и вещественных чисел окончится неудачей, так как всегда останутся вещественные числа без пары. Теперь вспомним пример с парами танцоров из предыдущей главы. Если бы нам заранее сказали, что вне зависимости от того, как сформируются пары, все равно останутся женщины без партнера, мы сразу заключили бы, что женщин больше, чем мужчин. Если в любом случае остаются вещественные числа без пары, это означает, что их больше, чем натуральных, но не в том смысле, что одно множество входит в другое, а в смысле их мощности. Кардинальное число (мощность) вещественных чисел («количество членов» в нем) больше, чем у натуральных чисел.

Целые, натуральные и рациональные числа обладают одинаковой мощностью, а «уровень бесконечности» вещественных чисел выше, чем натуральных. Их бесконечное множество «больше» бесконечного множества натуральных. Таким образом, Георг Кантор не только осмелился сравнить два бесконечных континуума — это возмутило бы и Аристотеля, и Галилея,— но и пришел к выводу, что некоторые бесконечности больше других. Иными словами, его доказательство касательно трансцендентных чисел таково: бесконечность множества вещественных чисел больше бесконечности алгебраических чисел, следовательно, должно быть бесконечное множество вещественных чисел, которые не являются алгебраическими, то есть бесконечные трансцендентные числа. В 1874 году эти идеи были настолько революционными, что Вейерштрасс посоветовал Кантору скрыть их. Но почему же тогда Кантор все-таки занялся ими? Из чистого противоречия?

АЛГЕБРАИЧЕСКИЕ ЧИСЛА

Число называется алгебраическим, если является решением уравнения типа anxn + an-X1n-1 + ... + aX1 + a0 = 0, где an, an-1,... ,a0 — целые числа, а an ≠ 0. Например, 7/5 — алгебраическое число, так как является решением уравнения 5х - 7 = 0; еще один пример алгебраического числа — √3, которое является решением уравнения х2 - 3 = 0. Это уравнение называется уравнением второй степени, так как наибольшая степень х в нем — х2; уравнение, приведенное вначале, — уравнение первой степени (напомним, что x = x1). Мы можем доказать, что √3 является не только решением уравнения x2 - 3 = 0, но и уравнения третьей степени х3 - х2 - 3х + 3 = 0, и уравнения четвертой степени х4 - 9 = 0, и уравнения пятой степени, и шестой и так далее. Однако √3 не является решением уравнений степени меньше 2, которое при этом удовлетворяет всем вышеуказанным условиям. Самая меньшая возможная степень для √3 — вторая, поэтому говорят, что √3 — это алгебраическое число степени 2. Другими алгебраическими числами степени 2 являются, например, √2 и 

 (1 + √5)/2,

(Другой стороны, можно доказать, что 3√2 — число степени 3, что √2 + √3 — число степени 4, и что все рациональные числа, как в случае с 7/5, являются алгебраическими числами степени 1. Итак, чтобы удалось построить отрезок с помощью линейки без делений и циркуля, его длина должна соответствовать алгебраическому числу, причем степени 1, 2, 4, 8,16 или любой другой, делящейся на 2. Поскольку π — не алгебраическое число, отрезок этой длины такими инструментами построить нельзя. Также нельзя построить отрезок длиной √2, поскольку, хотя это и алгебраическое число, его степень равна 3.

Он задумался о них еще в ходе первых исследований в Галле, и результаты работы привели его к тому, чтобы отнестись к ним серьезно. В 1883 году Кантор писал:

«К мысли о том, чтобы рассматривать бесконечно большое не только в форме безгранично возрастающего [...], но также закрепить его математически с помощью чисел в определенной форме завершенно бесконечного, я пришел почти против собственной воли и в противоречии с ценными для меня традициями, логически вынужденный к этому ходом многолетних научных усилий и попыток. Поэтому я не думаю, что могут найтись доводы, на которые я не сумел бы ответить».