Выбрать главу
ПАРАДОКС РАССЕЛА

В 1902 году Фреге только что отправил в печать второй том своих «Основ арифметики» (в этой работе он развивал идею основания математики на теории множеств), когда получил письмо от английского логика Бертрана Рассела (1872-1970). Оно было отправлено 16 июня 1902 года из Фрайдей Хилла (Хаслмир, Великобритания) и занимало чуть меньше страницы. Рассел писал, что прочитал первый том «Основ», хвалил его и заявлял, что полностью разделяет задумку Фреге. «И тем не менее, — добавлял Рассел, — я нашел небольшое осложнение».

В чем же оно состояло? Одна из аксиом, которую Фреге подводил под теорию множеств, заключалась в так называемом принципе выделения. Другими словами, согласно ей, каждому свойству соответствует множество, состоящее из всех объектов, которые обладают этим свойством. Например, свойство «быть книгой по математике» соответствует множеству, образованному всеми книгами по математике; свойству «быть рациональным числом» соответствует множество всех рациональных чисел и так далее. В письме Фреге Рассел сформулировал следующий вопрос: что произойдет, если мы рассмотрим свойство «быть множеством, которое не является членом самого себя?»

По аксиоме Фреге, говорит Рассел, этому свойству соответствует множество — назовем его F, — образованное всеми множествами, которые соблюдают параметр не быть членами самих себя. Таким образом, вопрос звучит так: «F — член самого себя?»

Если да, то, как и все члены, оно обладало бы свойством, определяющим множество, но F не должно быть членом самого себя. Мы приходим к противоречию, так как исходим из одного предположения, а получаем противоположный вывод. Таким образом, эта предпосылка не может быть верной. Тогда F не является членом самого себя.

Но в этом случае оно не соответствует свойству, определяющему F, так как должно быть членом самого себя. Мы сталкиваемся с еще одним противоречием (см. рисунок).

Резюмируем: F не может быть членом самого себя, но не может и не быть им. Это невозможно с точки зрения логики. Множество Fy существование которого гарантирует принцип выделения, не может существовать, потому что это порождает логическое противоречие. Принцип выделения, казавшийся таким невинным, ведет к парадоксу. Сегодня парадокс множеств, которые не являются членами самих себя, известен как парадокс Рассела.

КРИЗИС ОСНОВАНИЙ

Парадоксы Бурали-Форти и Кантора, конечно, вызвали обеспокоенность в научном сообществе, но это не было неподконтрольным волнением.

Действительно, проблема парадоксов требовала решения, но оба они относились к таким объектам, как множество всех ординальных чисел и универсальное множество, которые никогда не фигурировали в какой-либо другой области математики, использующей понятия теории множеств. С другой стороны, помимо предложенного Кантором решения, многие другие ученые полагали, что чтобы устранить парадоксы, достаточно внести в теорию множеств технические поправки, например в определение. В общем, хотя все и признавали наличие проблемы, казалось, что она касается очень ограниченной области теории множеств и, разумеется, имеет решение.

Схема парадокса Рассела. Стрелки указывают порядок логических выводов.

Парадокс Рассела, напротив, вызвал гораздо более глубокий кризис, так как аксиому, утверждающую, что каждому свойству соответствует множество, использовали на протяжении нескольких лет все ученые, применявшие понятия теории множеств. Доказав, что эта аксиома противоречива, Рассел не только обрушил всю систему Фреге, но и заставил усомниться во всех достижениях, основанных на теории множеств. В частности, была поставлена под вопрос верность исчисления. Более того, принцип выделения в действительности кажется очевидным, а если такое невинное на первый взгляд утверждение оказывается настолько противоречивым, какие опасности таятся в других аксиомах или предположениях, которые так или иначе математики доверчиво использовали в своих утверждениях?