Выбрать главу

МЫ УЖЕ СТОЛЬКО РАЗ ПРОИЗНОСИЛИ ЭТО СЛОВО «ЛАЗЕР». ПОРА ПОГОВОРИТЬ И О САМОМ ЛАЗЕРЕ.

Изобретение принципиально новых источников света — лазеров — вдохнуло новую жизнь в оптику, к этому времени считавшуюся завершенной наукой.

Свет получил множество новых применений, так как приобрел совершенно новые качества: высокую монохроматичность (предельно высокую цветовую чистоту), острую пространственную направленность, огромную спектральную яркость. С точки зрения классической оптики был создан как бы точечный источник с огромной температурой, который позволял получать не только узкие нерасходящиеся лучи, но и концентрировать в них огромную мощность. Именно эти характеристики привели к рождению и бурному развитию нового раздела в самой оптике — нелинейной оптики.

В настоящее время созданы оптические квантовые генераторы (ОКХ) различных видов: на кристаллах и стеклах (твердотельные квантовые генераторы), полупроводниковые генераторы, генераторы на жидких красителях, на газовых смесях.

ТАК ЧТО ЖЕ ТАКОЕ ЛАЗЕР? ЧТО ПРЕДСТАВЛЯЕТ СОБОЙ ИНДУЦИРОВАННОЕ ИЗЛУЧЕНИЕ?

Прежде всего раскроем физический смысл понятия «индуцированное излучение».

Индуцированное (вынужденное) излучение возникает в результате согласованного по частоте, фазе и направлению почти одновременного испускания электромагнитных волн огромным количеством атомов, ионов или молекул под действием внешнего электромагнитного поля. Оно может происходить во всех диапазонах длин волн электромагнитного излучения: радио, инфракрасном, видимом, ультрафиолетовом и рентгеновском.

Если в обычных генераторах и усилителях электромагнитных волн (в вакуумных электронных лампах и транзисторах) используют свободные электроны, движение которых описывается классической физикой, то в квантовых генераторах мы имеем дело со связанными электронами, входящими в состав атомов, молекул, ионов, кристаллов.

Движение таких электронов подчиняется законам квантовой механики. Отсюда и появились названия «квантовая электроника», «квантовые генераторы», «квантовые усилители» и т. п.

Согласно законам квантовой механики, энергия электрона в атоме не произвольна: она может иметь лишь определенный (дискретный) ряд значений E0, Е1, E2…, Еn, называемых уровнями энергии. Значения эти различны для разных атомов. Набор дозволенных значений энергии носит название энергетического спектра атома.

В нормальных условиях (при отсутствии внешних воздействий) большая часть электронов в атомах веществ пребывает на самом низком невозбужденном уровне E0, т. е. атом обладает минимальным запасом внутренней энергии; остальные уровни Е1, E2…, Еn соответствуют более высокой энергии атома и называются возбужденными (рис. 42).

Рис. 42. Энергетический спектр атома

При переходе электрона с одного уровня энергии на другой атом может испускать или поглощать электромагнитные волны, частота которых vm.n определяется соотношением

vm.n = (ЕmEn)/h.

Здесь h — постоянная Планка (h = 6,62∙10-34 Дж∙с), Еn — конечный, Еm — начальный уровень. Чем больше разность энергий состояний, между которыми происходит переход, тем больше частота электромагнитной волны, испускаемой или поглощаемой при таком переходе, тем больше энергия волны hv.

Именно дискретностью энергетического спектра, как нам известно, объясняется линейчатый характер спектра испускания или поглощения электромагнитных волн атомами.

Приведенная выше формула выражает закон сохранения энергии при элементарных актах испускания или поглощения фотонов атомами.

Возбужденный атом может отдать свою некоторую избыточную энергию, полученную от внешнего источника или приобретенную им в результате теплового движения электронов, двумя различными способами.

Всякое возбужденное состояние атома неустойчиво, и всегда существует вероятность его самопроизвольного перехода в более низкое энергетическое состояние с испусканием кванта электромагнитного излучения. Такой переход называют спонтанным (самопроизвольным). Он носит нерегулярный, хаотический характер.