Если теперь, когда инверсия уже велика, правый торец станет частично отражающим («заменится» полупрозрачным зеркалом), возникнет усиление и будет генерирован импульс излучения. Заметим, что в этом режиме мощность излучения не превышает мощности, выделяемой при стационарном (непрерывном) режиме.
НО СУЩЕСТВУЕТ ЕЩЕ И РЕЖИМ ГИГАНТСКИХ ИМПУЛЬСОВ?
В режиме гигантских импульсов излучение реализуется в виде мощных одиночных или повторяющихся импульсов, пиковая мощность которых достигает 106—1010 МВт при длительности порядка 10-12 с.
В этом случае при накачке и «накоплении» инверсии оба торца лазера непрозрачны — генерация нарастает до значительных размеров. Затем одно из препятствий излучению (с правого конца стержня) «убирается» и мощный импульс беспрепятственно устремляется наружу. Для обеспечения условий импульсного режима генерации применяют дополнительные элементы (4 на рис. 46) различной конструкции — оптические затворы. В простейшем случае это может быть синхронизированный с импульсами накачки вращающийся прерыватель светового пучка или вращающееся зеркало резонатора. Для создания режима гигантских импульсов более совершенными оказываются пассивные и электрооптические затворы.
Рассмотрим вкратце для примера работу пассивного затвора, представляющего собой жидкость, просветляющуюся под действием генерируемого излучения. После включения импульса накачки начинает создаваться инверсия населенностей энергетических уровней, однако затвор непрозрачен и генерация отсутствует. Появляющиеся фотоны за счет спонтанных переходов частотой hv21 = (E2 — E1)/h поглощаются активными центрами жидкости, и начинается просветление затвора. При частичном просветлении затвора начинается генерация излучения, число фотонов с частотой hv21 резко возрастает, затвор быстро и окончательно просветляется. В результате возникает гигантский импульс лазерного излучения. По окончании действия импульса накачки затвор снова становится непрозрачным — до следующего импульса накачки, т. е. действие пассивного затвора полностью регулируется импульсами накачки. В качестве просветляющихся жидкостей применяют фталоцианин в нитробензоле, криптоцианин в нитробензоле и др.
РАССКАЖИТЕ О ГАЗОВЫХ ОКГ.
Активные центры в газовых ОКГ могут иметь разную физическую природу: либо это нейтральные атомы (атомные газовые ОКГ), либо ионы (ионные газовые ОКГ), либо молекулы (молекулярные газовые ОКГ).
В атомных газовых ОКГ энергетические уровни атомов находятся на расстоянии от 0,1 до 2 эВ, чему соответствует оптическое излучение в инфракрасной и видимой областях спектра (λ = 500÷10 000 нм).
В ионных газовых ОКГ переходы происходят между уровнями ионов. Расстояние между рабочими уровнями составляет от 2 до 10 эВ, чему соответствует излучение в видимой и ультрафиолетовой областях спектра (λ = 100÷500 нм).
В молекулярных газовых ОКГ переходы осуществляются между колебательными и вращательными уровнями молекул; расстояние между рабочими уровнями от 0,01 до 0,1 эВ, чему соответствует излучение в диапазоне сверхвысоких частот (СВЧ) и инфракрасной области спектра (λ= 106÷104 нм).
Активная среда газовых ОКГ расположена внутри газоразрядной трубки, а для накачки используют импульсные или стационарные виды разрядов.
Газы обладают высокой оптической однородностью и прозрачностью, это позволяет изготовлять длинные газоразрядные трубки (от нескольких десятков сантиметров до нескольких и даже десятков метров).
На рис. 48 приведена принципиальная схема газоразрядной трубки ОКГ на гелий-неоне (активная среда — гелий-неон, активные центры — атомы неона).
Рис. 48. Газовый ОКГ на гелий-неоне
Используется тлеющий разряд постоянного тока. Зеркала резонатора расположены вне газоразрядной трубки.
Для ОКГ на гелий-неоне характерны следующие параметры: выходная мощность 0,01 Вт, коэффициент полезного действия 0,01 %.
Одним из самых мощных современных: лазеров является молекулярный газовый ОКГ на углекислом газе. Активная среда в нем — смесь углекислого газа (около 1 мм рт. ст.), молекулярного азота (1 мм рт. ст.) и гелия (около 5 мм рт. ст.); активные центры — молекулы СО2. Используется тлеющий разряд, в верхний рабочий уровень молекулы СО2 заселяется за счет электронного возбуждения и неупругих столкновений с молекулами азота (время жизни этого уровня 10-1 с).