Выбрать главу

Тип А8 характерен для болот с содовыми водами. Типы А9А12 возникают в местах разгрузки глубинных сероводородных вод — на контакте этих вод с кислородными подземными водами или с кислородом воздуха. Здесь особые бактерии окисляют сероводород до элементарной серы. Эти явления широко распространены на выходах сероводородных источников. В прошлые геологические эпохи в местах длительной разгрузки сероводородных вод возникали месторождения самородной серы, как, например, в Туркмении (Гаурдак, Серные Бугры), Ферганской долине (Шорсу). Образование сероводородных вод особенно энергично идет на участках нефтяных месторождений (углеводороды — пища для бактерий), где развиты гипсы — источник сульфатов. Поэтому именно к таким местам и приурочены серные месторождения (типы А11 и А12, рис. 31).

В местах, где кислородные или глеевые воды встречают на пути своего движения сероводородную обстановку, или сульфиды, возникают сероводородные, или сульфидные барьеры (В). Образование сероводорода, как мы убедились, в основном связано с деятельностью бактерий, реже при этом имеют место химические реакции. Сероводородные (сульфидные) барьеры имеют большое практическое значение, так как на них образуются рудные тела некоторых месторождений меди, урана, селена и других элементов. Еще чаще встречаются геохимические аномалии этих элементов.

Если на возвышенности располагаются рудные тела, содержащие сульфиды железа, никеля, кобальта, меди и других металлов, то окисление этих руд приводит к образованию сернокислых грунтовых вод, обогащенных металлами. Двигаясь в сторону депрессий рельефа, такие воды встречают торфяное болото у подножия склона, где бактерии восстанавливают SO42- с образованием Н2S. В результате в краевой зоне болота возникает сероводородный барьер, на котором концентрируются принесенные металлы. Так образуется геохимическая аномалия В1, оторванная от оруденения, которая служит важным поисковым признаком месторождений (рис. 32). Эти явления были изучены в районе медно-никелевых месторождений Кольского полуострова.

В зонах окисления сульфидных месторождений наблюдается и вертикальная миграция сернокислых растворов, которые, реагируя с первичными сульфидами, также дают сероводород:

MeS + H2SO4 → MeSO4 + H2S.

В результате в нижней части зоны окисления возникает сероводородный барьер, на котором осаждаются металлы, вынесенные из зоны окисления. Так образуются вторичные богатые сульфидные руды, местами представляющие главную ценность месторождения. В ряде случаев осаждение происходит и без участия сероводорода вследствие других процессов, но с обязательным участием сульфидов. Формирование этой зоны вторичного сульфидного обогащения связано, в частности, с обменными реакциями типа

CuSO4 + MeS → CuS + MeSO4.

Большое значение приобретают и различные микрогальванические пары, т. е. электрохимические явления. Поэтому можно говорить о сульфидном барьере, частным случаем которого является и сероводородный барьер.

Во многих озерных, морских и океанических илах, а также в морских осадочных породах встречаются сульфиды железа (пирит) и реже других металлов. Это позволяет утверждать, что в илах существовал сероводородный барьер, на котором из слабощелочной, морской или иловой воды осаждались металлы (тип В3, отчасти В7). Напомним, что особенно энергично эти процессы протекали в конце рифея в так называемую вендскую эпоху и в начале палеозоя — в кембрии, ордовике, силуре (680—410 млн. лет назад). Именно в это время во многих морях шло накопление илов, обогащенных сульфидами металлов.

Подробно изучен тип концентрации В3, с которым связано образование урановых руд в водоносных горизонтах артезианских бассейнов. Как показали исследования, сероводородный барьер здесь возникает на выклинивании зоны пластового окисления. Уран и его спутники — селен и молибден — осаждаются из инфильтрующихся вод. В сходных условиях могут формироваться и концентрации типа В4, менее ясны типы В5B8, они еще подлежат изучению.

Рис. 30. Аккумуляции типа А6.

1 — кислые глеевые воды. Кислородные барьеры: 2 — у основания склона; 3 — на дне озера; 4 — в зоне разлома

Рис. 31. Схема формирования месторождения самородной серы в местах длительной разгрузки сероводородных вод (A11)