Выбрать главу

Испарительные барьеры (F) — это такие участки биосферы, где в результате испарения поверхностных или подземных вод происходит отложение растворимых солей, преимущественно хлоридов и сульфатов и значительно реже карбонатов, нитратов, боратов, йодатов, хроматов и т. д. О проявлениях испарительных барьеров уже говорилось: к ним относятся и засоленные почвы (солончаки и солонцы), и соляные озера. Обнаружено также засоление пород, обязанное испарению глубокозалегающих грунтовых вод. Во всех случаях мы сталкиваемся с уже известной закономерностью: геологические и географические формы проявления геохимического барьера весьма разнообразны (почвы, озера, горные породы), но их геохимическая сущность одинакова — накопление наиболее подвижных элементов, образующих растворимые соли.

В геологических науках много внимания уделяется соляным озерам, лиманам, соляным отложениям. В биосфере засоление развивается уже более 500 млн. лет; его наследие в виде залежей ископаемых солей играет важную роль в жизни человечества (пищевая соль, химическое сырье и т. д.). Сельскохозяйственное освоение степей и пустынь потребовало глубокого изучения солончаков и солонцов, начало которому, как мы убедились положили исследования К. К. Гедройца. Ныне это крупный раздел почвоведения.

Рис. 33. Аномалии типа В1, Д1 и Е3.

1 — сернокислые растворы; 2 — известняки; 3 — щелочной барьер (Д), 4 — миграция вод в сторону сульфидных руд; 5 — кислый барьер (Е)

Рис. 34. Аномалия типа Д2

1 — ультраосновные породы; 2 — известняки; 3 — кислые воды; 4 — щелочной барьер (Д)

Все процессы миграции и концентрации солей А. Е. Ферсман предложил именовать галогенезом. Своеобразные аспекты изучения галогенеза, новые разновидности испарительных барьеров выявились в связи с геохимическими поисками рудных месторождений. С этой целью потребовалось изучать засоление в низкогорных каменистых степях и пустынях (ранее оно не привлекало большого внимания), поведение редких элементов при засолении, роль разломов земной коры в процессах засоления.

Разлом — это крупная трещина (или система трещин) в скальных породах, прослеживающаяся на большую глубину, местами на десятки и, возможно, сотни километров. Разломы специально изучает геологическая наука тектоника, но интересуются ими многие представители наук о Земле — и геологи и географы. По разломам часто происходит поднятие напорных подземных вод к поверхности. В степях и пустынях в таких местах нередко образуется испарительный барьер, в связи с чем сама зона разлома прослеживается в виде линии или цепочки солончаков, солонцов, соляных озер, своеобразной растительности, состоящей из сочных «солянок». Нередко такое разломное засоление, как его назвал автор, простирается на многие десятки и даже сотни километров. В этом случае испарительный барьер имеет важное индикационное значение. Прежде всего, выцветы солей помогают геологу при съемке прослеживать разломы, наносить их на карту. Интересуют такие солончаки и гидрогеолога. Хорошо известно, что в сухих степях и пустынях часто отсутствуют реки и пресные озера и главную надежду в поисках питьевой воды возлагают на подземные воды. А многие разломы водоносны. Поэтому нередко достаточно пробурить скважину на участке разлома, чтобы получить хороший источник водоснабжения. Признаком разлома служит испарительный барьер — линейная зона засоления. Но, позвольте, может сказать читатель, для водоснабжения необходима пресная вода, а солончаки указывают на соленую воду. Это верно, но многие разломы содержат хорошую пресную воду, и только вблизи самой поверхности она осолоняется. Следовательно, если воду откачивать с некоторой глубины, то она будет вполне пригодна для питья.

Конечно, не одни солончаки являются признаками разломов; у геологов имеется много других критериев, но и испарительный барьер может принести пользу.

Теперь посмотрим, как матричный принцип позволяет выделить различные виды испарительных барьеров. Концентрация тина F1 образуется в результате испарения сернокислых вод. Напомним, что серная кислота в биосфере образуется преимущественно при окислении пирита, например, в зоне окисления сульфидных месторождений. Если сульфидные рудные выходы окисляются в степях или пустынях, то сернокислые грунтовые воды нередко испаряются в понижениях рельефа, где образуются сернокислые солончаки, обогащенные растворимыми солями меди, цинка и других металлов. Так появляется геохимическая аномалия F1, ландшафт в целом относится к сернокислому классу.