Выбрать главу

Первая скрипка

Проблемами бактериальной азотфиксации занимался и Дмитрий Иванович Прянишников — основатель русской и советской агрохимической школы. А знаменитая обзорная статья ученого «Аммиак как альфа и омега обмена азотистых веществ в растении», посвященная памяти К. А. Тимирязева, и поныне считается настольной книгой всех, кто занимался проблемами почвенного плодородия. В знак признания заслуг ученого перед нашей страной Академия наук СССР учредила специальную золотую медаль его имени. Она присуждается раз в три года за выдающиеся результаты в области изучения азотного питания растений. Одним из лауреатов этой медали за цикл работ «Роль биологического азота и пути его использования в земледелии СССР» стал академик Е. Н. Мишустин. Творчески развивая идеи Прянишникова, ученый со всей убедительностью доказывает в своих трудах, что в том симбиотическом содружестве, в котором живут и развиваются микроорганизмы, именно им, а не растениям, принадлежит роль «первой скрипки» в восстановлении атмосферного азота. Более того, рассекретив интимный механизм, с помощью которого свободноживущие бактерии-азотфиксаторы в минимальные сроки возвращают почве утраченное плодородие, ученый блестяще доказывает его полную идентичность механизму бактерий симбиотических. Между тем, именно этот вопрос был предметом долголетних споров и дискуссий на международном уровне. И лишь открытие нитрогеназы подтвердило верность взглядов советского академика.

Но вклад Е. Н. Мишустина в познание фундаментальных основ микробиологии и почвоведения на этом отнюдь не завершается, ибо целая серия по-настоящему красиво поставленных и очень доказательных опытов позволяет сделать исследователю еще один сенсационный вывод: азотфиксирующая способность изучаемых бактерий — их главная, но не единственная функция. Есть еще и вторая: в процессе жизнедеятельности они одновременно с азотфиксацией синтезируют и биологически активные вещества, стимулирующие рост и развитие посевов.

Сегодня гиббереллины, ауксины, цитокинины, синтезируемые бактериями-азотфиксаторами, стали своеобразным эталоном, по образу и подобию которого микробиологическая промышленность страны выпускает множество наименований всевозможных биостимуляторов роста.

Но вернемся вновь к уникальной способности бактерий фиксировать атмосферный азот, а вернее, к идее ее стимулирования высказанной несколько выше. Нельзя ли, в самом деле, увеличить скорость ассимиляции микроорганизмами молекулярного азота? На языке практики это означало бы и ускорение процесса восстановления плодородия почв.

Оказывается, можно. Существует даже несколько путей решения этой довольно сложной проблемы. Первый из них был предложен в свое время членом-корреспондентом АН СССР А. М. Кузиным. Суть же решения заключалась в том, чтобы путем радиационного воздействия на внутренние биологические мембраны клетки наиболее полно выявить ее наследственные признаки. Причем оригинальная методика, разработанная ученым, открывает возможность из поколения в поколение усиливать эти признаки, все констрастнее проявляя свойства, практически полезные для хозяйственной деятельности человека. Реализованная в промышленных масштабах, она позволила поставить на индустриальный поток культивирование высокоэффективных штаммов микробов-азотфиксаторов.

Второй вариант решения все той же проблемы ускорения азотфиксирующей способности бактерий предложили биотехнологи, использовав при этом им одним присущее сочетание чисто биологических подходов к эксперименту с технической виртуозностью его проведения. Другими словами, биотехнология в данном случае воспользовалась тончайшими методами генетической инженерии.

Работа осуществлялась в Институте биохимии и физиологии микроорганизмов АН СССР под руководством академика А. А. Баева. Ученые шли к той же цели, что и А. М. Кузин (ускорение бактериями азотфиксирующей деятельности), но своим, оригинальным путем. Познание молекулярно-генетических основ симбиотических взаимосвязей — вот что стало их программой-максимумом. Вспомните-ка энциклопедическое определение понятия «почва», на сей раз его первую часть: «природное образование, состоящее из генетически связанных горизонтов...» Но зачем ученым понадобилось столь углубленное проникновение в симбиотические взаимосвязи?

Для того чтоб, разобравшись в них, получить возможность управлять процессом азотфиксации. А достигнуть задуманное оказалось возможно лишь путем направленного конструирования бактериальных суперштаммов, наиболее перспективных для использования в земледелии.