Выбрать главу

Вот, полюбуйтесь! Классический и самый прямой способ убедиться в наличии синодической болтанки Земли «к Солнцу – от Солнца» - это обнаружить соответствующее изменение углового диаметра диска Солнца: его увеличение в полнолуние и уменьшение в новолуние. Правда, величина эффекта маловата: всего шесть сотых угловой секунды – и отследить его весьма и весьма сложно. А жаль, очень кстати бы пришлось. Ну да не беда: есть ведь и другие способы! Вот, например: исследование спектральных линий Солнца. Если бы Земля болталась «к Солнцу – от Солнца» - с амплитудной скоростью 12.3 м/с – то, из-за эффекта Допплера, спектральные линии Солнца периодически сдвигались бы туда-сюда. Но чегой-то никто не выступает с радостными заявлениями на этот счёт. И не потому, что спектры Солнца недостаточно хорошо изучены: они изучены вдоль и поперёк. Может, исследователи скромничают? Да некогда им скромничать – они сейчас бурно развивают новое направление: открывание, понимаете ли, экзопланет. Так они называют планеты у далёких звёзд, которые обнаруживают себя единственно через периодические сдвиги спектров своих звёзд – якобы, из-за всё того же эффекта Допплера при обращении звезды около общего с планетой центра масс. Сбацали спектрографы, дающие уму непостижимую точность: в пересчёте на скорость, получается всего 1 метр в секунду! Взять бы это чудо техники да с солнечными спектрами поработать – синодическая болтанка Земли поперёк орбиты стоит того! Но нет: допплеровский метод – он капризный какой-то получается. Лишь в случае далёких, неизученных звёзд всё выходит изумительно: сенсация на сенсации едет и сенсацией погоняет. А в случае Солнца, когда все важные параметры достоверно известны, что-то там фатально заклинивает... Идём дальше, и видим ещё один распрекрасный метод: приём импульсов пульсаров. Здесь синодическая болтанка Земли «к Солнцу – от Солнца» проявилась бы во всей своей красе: накапливающиеся за полмесяца запаздывания-опережения моментов прихода импульсов от подходящих пульсаров достигали бы аж три сотых секунды! Чтобы это легко увидеть, нужно было бы всего лишь определять моменты прихода импульсов в системе отсчёта, связанной с центром Земли. Вместо этого, как нарочно, в хронометрировании пульсаров принято пересчитывать моменты прихода импульсов к центру масс Солнечной системы. При этом информация о движении Земли в паре Земля-Луна теряется полностью. Ну, знаете, это уже симптом! Непременно должны быть какие-то «высшие соображения», руководствуясь которыми, исследователи, не поморщившись, выбрасывают целый пласт информации! Что за страшную тайну скрывает этот пласт? Не ту ли, что синодическая болтанка Земли «к Солнцу – от Солнца» не существует?

Так или иначе, но эта болтанка упорно не обнаруживается прямыми методами. Поэтому, с горя прибегают к методам кривым. По-простому это называется «через задницу», а по-научному – «оптимизация многих параметров». Мало кто знает, в чём прелесть этого метода. Вон, бывает, что в потоке опытных данных имеются кое-какие особенности, которые из теоретических соображений являются лишними. Тогда проблема легко решается: известен целый набор математических процедур – фильтрация, сглаживание, и др. – которые позволяют удалить из потока данных все лишние глупости. Это дело не хитрое: удалять-то. А что бедным учёным делать в противоположной ситуации: когда в потоке данных упорно отсутствует некоторая особенность – а очень хочется, чтобы она присутствовала? Вот для таких случаев и был разработан метод оптимизации многих параметров. Он тем и хорош, что позволяет вполне наукообразно засвидетельствовать наличие несуществующих эффектов. Для этого записываются сложные, аналитически не решаемые уравнения, в которых желаемый эффект – это ключевой момент! – учитывается так, как будто он реально существует. Чем сильнее уравнения навороченны, и чем больше параметров в них входит – тем лучше. Потому что тем неочевиднее для посторонних глаз становится смысл дальнейшего таинства «оптимизации». А таинство это вот какое. С помощью быстродействующих ЭВМ варьируются входящие в уравнения параметры – таким образом, чтобы найти наилучшее согласие между теорией, в которой желаемый эффект есть, и опытными данными, в которых этого эффекта нет. Кому-то с непривычки может показаться странным – о каком же «наилучшем согласии» может идти речь в таком случае. Да уж о таком, какое получается! Конечно, здесь получается наилучший вариант из никудышных, но он по-честному наилучший! В этом и смысл «оптимизации» - не зря же ЭВМ гоняли, в самом деле! Вот и выдаст ЭВМ пачку значений «оптимизированных» параметров. Причём, выходит особенно мило, если в число этих параметров были включены какие-либо физические постоянные, имеющие важное прикладное значение. После «оптимизации», значения этих постоянных оказываются уточнёнными! Пользуйтесь, товарищи дорогие! И пусть теперь попробует кто-нибудь из дорогих товарищей усомниться в том, что эффект, ради которого затевалась вся эта «оптимизация», реально существует. Как же, мол, ему не существовать, если он учитывался в теории, и было найдено наилучшее согласие этой теории с опытными данными!