Выбрать главу

  Эксперименты, проведённые в широком диапазоне скоростей для различных газов и материалов, дают значения a в широких пределах — от 0,95 до 0,02. Установлено, что уменьшение a происходит при увеличении скорости молекул газа и отношения молекулярных масс m1 и m2 тела и газа. Так например, если вместо тела из алюминия взять тело из свинца, то коэффициент аккомодации уменьшается примерно в 4 раза, что приводит к уменьшению аэродинамического нагрева. Коэффициент f изменяется меньше: от 0,98 до 0,7.

  Разреженность среды проявляется в совершенно необычном поведении аэродинамических коэффициентов. Так, коэффициент сопротивления сферы Cx зависит от отношения абсолютной температуры тела Tw к абсолютной температуре потока Ti а также от a и f (рис. 2), в то время как в сплошной среде таких зависимостей не наблюдается. Коэффициенты, характеризующие теплообмен, также отличаются качественно и количественно от континуальных.

  Промежуточная область. При l/d ~ 1 существенна роль межмолекулярных столкновений, когда отражённые от поверхности тела молекулы значительно искажают распределение скоростей молекул набегающего потока. Теоретические решения для свободномолекулярного потока здесь неприемлемы. Вместе с тем, такое течение ещё нельзя рассматривать как течение сплошной среды. Промежуточная область весьма трудна для математического анализа.

  Течение со скольжением. Если размер тела d в десятки раз больше l, т. е. l/d < 1, то в потоке уже могут возникать характерные для газовой динамики ударные волны и пограничные слои на поверхности тел. Однако, в отличие от обычного пограничного слоя, температура примыкающего к стенке газа Ta не равна температуре стенки Tw, а скорость потока на поверхности тела не равна нулю (поток проскальзывает). Скачок температуры (Tw—Ta) пропорционален l и зависит от f. Скорость скольжения также пропорциональна l и зависит от f. Эксперименты показывают, что при увеличении разреженности газа происходит утолщение ударной волны, возрастает и толщина пограничного слоя, но значительно медленнее (рис. 3). Ударная волна может распространиться на всю область сжатого газа в районе передней критической точки обтекаемого тела и слиться с пограничным слоем. Распределение плотности в районе передней критической точки становится плавным, а не скачкообразным, как в континууме. При расчёте течений со скольжением поток описывается обычными уравнениями газовой динамики, но с граничными условиями, учитывающими скачок температуры и скорость скольжения.

  Границы упомянутых областей течения весьма условны. Для различных тел появление признаков, характеризующих ту или иную область, может наступить при разных значениях параметра разреженности l/d. В связи со сложностью теоретических расчётов и необходимостью определения ряда эмпирических констант, входящих в практические методы расчёта тепловых и аэродинамических характеристик, особое значение в А. р. г. приобретает эксперимент.

  Лит.: Аэродинамика разреженных газов, сб. 1, под ред. С. В. Валландера, Л., 1963; Паттерсон Г. Н., Молекулярное течение газов, пер. с англ., М., 1960; Тзян Х. Ш., Аэродинамика разреженных газов, в сборнике: Газовая динамика, сб. статей, пер. с англ., под ред. С. Г. Попова и С. В. фальковича, М., 1950.

  Л. В. Козлов.

Рис. 2. Зависимость коэффициента сопротивления сферы Cx в свободномолекулярном потоке при различных отношениях абсолютной температуры тела Tw к абсолютной температуре потока Ti: а — от числа М полёта для a = 1,0 и б — от коэффициента аккомодации a.

Рис. 1. Условная схема различных течений около плоской длинной бесконечно тонкой пластины, обтекаемой сверхзвуковым потоком: А — свободномолекулярное течение с однократными соударениями; В — промежуточная область с многократными соударениями; С — течение со скольжением; D — континуум; 1 — ударная волна; 2 — граница пограничного слоя (стрелки показывают значения скорости на данном расстоянии от стенки; 3 — макроскопическое движение молекул. (Масштабы зон и областей не соблюдены.)

Рис. 3. Фотографии ударной волны перед сферой диаметра d == 15 мм: слева — в разреженном газе; справа — в сплошной среде.

(обратно)

Аэродинамическая сила

Аэродинами'ческая си'ла, см. Аэродинамические сила и момент.

(обратно)

Аэродинамическая труба

Аэродинами'ческая тру'ба, установка, создающая поток воздуха или газа для эксперимент, изучения явлений, сопровождающих обтекание тел. С помощью А. т. определяются силы, возникающие при полёте самолётов и вертолётов, ракет и космических кораблей, при движении подводных судов в погруженном состоянии; исследуются их устойчивость и управляемость; отыскиваются оптимальные формы самолётов, ракет, космических и подводных кораблей, а также автомобилей и поездов; определяются ветровые нагрузки, а также нагрузки от взрывных волн, действующие на здания и сооружения — мосты, мачты электропередач, дымовые трубы и т. п. В специальных А. т. исследуется нагревание и теплозащита ракет, космических кораблей и сверхзвуковых самолётов.