Выбрать главу

  Ф. может возникать также в однородном полупроводнике при одновременном одноосном сжатии и освещении (фотопьезоэлектрический эффект). Она появляется на гранях, перпендикулярных направлению сжатия, её величина и знак зависят от направления сжатия и освещения относительно кристаллографических осей. Ф. пропорциональна давлению и интенсивности излучения. В этом случае Ф. обусловлена анизотропией коэффициентом диффузии фотоносителей, вызванной одноосной деформацией кристалла. При неоднородном сжатии и одновременном освещении полупроводника Ф. может быть обусловлена неодинаковым в разных частях кристалла изменением ширины запрещенной зоны под действием давления (тензорезистивный эффект ).

  В полупроводнике, помещенном в магнитное поле и освещенном сильно поглощающимся светом так, что градиент концентрации фотоносителей (и их диффузионный поток) возникает в направлении, перпендикулярном магнитному полю, электроны и дырки разделяются вследствие их отклонения магнитным полем в противоположных направлениях (см. Кикоина – Носкова эффект ).

  Сов. физик Б. И. Давыдов (1937) установил, что Ф. может возникать и при генерации только основных носителей заряда (или при поглощении электронами проводимости излучения), если энергия фотоносителей заметно отличается от энергии др. носителей заряда. Обычно такая Ф. возникает в чистых полупроводниках с высокой подвижностью электронов при очень низких температурах. Ф. в этом случае обусловлена зависимостью подвижности и коэффициента диффузии электронов от их энергии. Ф. этого типа имеет заметную величину в InSb n -типа, охлажденном до температуры жидкого гелия.

  При поглощении излучения свободными носителями заряда в полупроводнике вместе с энергией фотонов поглощается их импульс. В результате электроны приобретают направленное движение относительно кристаллической решётки и на гранях кристалла, перпендикулярных потоку излучения, появляется Ф. светового давления. Она мала, но вместе с тем очень мала и её инерционность (порядка 10-11сек ). Ф. светового давления используется в быстродействующих приёмниках излучений, предназначенных для измерения мощности и формы импульсов излучения лазеров .

  Лит.: Рыбкин С. М., Фотоэлектрические явления в полупроводниках, М., 1963; Тауц Ян, Фото- и термоэлектрические явления в полупроводниках, пер. с чеш., М., 1962; Фотопроводимость. Сб. ст., М., 1967.

  Т. М. Лифшиц.

Фотоэлектрическая звёздная величина

Фотоэлектри'ческая звёздная величи'на, см. Звёздная величина .

Фотоэлектрическая спектроскопия

Фотоэлектри'ческая спектроскопи'я, определение химического состава примесей в полупроводниках и изучение их энергетической структуры по спектрам примесной фотопроводимости . Примесный атом в полупроводнике может находиться в основном (невозбуждённом) или одном из возбуждённых энергетических состояний. Спектр этих состояний специфичен для каждого химического элемента примеси в данном полупроводнике. Если облучать полупроводник монохроматическим излучением, плавно изменяя частоту w, т. е. энергию фотонов (где  – Планка постоянная ), то всякий раз, когда будет совпадать с энергетическим зазором между основным и одним из возбуждённых состояний, атом примеси соответствующего сорта будет переходить в это возбуждённое состояние, поглощая фотон. Можно подобрать температуру кристалла так, что энергия его тепловых колебаний окажется достаточной для ионизации возбуждённого атома (но недостаточной для ионизации невозбуждённого атома). Тогда будет происходить двухступенчатая фототермическая ионизация примесных атомов: сначала оптическое возбуждение, а затем термическая ионизация. Её результатом является выброс электрона или дырки из атома примеси в зону проводимости и соответственно – фотопроводимость.

  Спектр примесной фотопроводимости состоит из набора пиков, каждый из которых соответствует энергии фотонов, вызывающих переход в одно из возбуждённых состояний атомов примеси определенного сорта (см. рис. ). Высоты пиков в широких пределах изменения концентраций примесей не зависят от этих концентраций. Благодаря этому Ф. с. позволяет обнаруживать ничтожно малые количества примесей. Например, в образце Ge, спектр которого приведён на рисунке, суммарная концентрация примесных атомов составляет 10-11 % от общего числа атомов. Теоретический предел чувствительности Ф. с. ещё на несколько порядков ниже.

  Лит.: Лифшиц Т. М., Лихтман Н. П., Сидоров В. И., Фотоэлектрическая спектроскопия примесей в полупроводниках, «Письма в редакцию ЖЭТФ», 1968, т. 7, в. 3, с. 111–14; Коган Ш. М., Седунов Б. И., Фототермическая ионизация примесного центра в кристалле, «Физика твердого тела», 1966, т. 8, в. 8, с. 2382–89; Быкова Е. М., Лифшиц Т. М., Сидоров В. И., Фотоэлектрическая спектроскопия, полный качественный анализ остаточных примесей в полупроводнике, «Физика и техника полупроводников», 1973, т. 7, № 5, с. 986–88; Kogan Sh. М., Lifshits, T. М., Photoelectric Spectroscopy – a new Method of Analysis of Impurities in Semiconductors, «Physica status solidi (a)», 1977, 39, № 1, p. 11.

  Т. М. Лифшиц.

Фотоэлектрический спектр Ge с примесями B, Al, Ga.

Фотоэлектрические явления

Фотоэлектри'ческие явле'ния, электрические явления, происходящие в веществах под действием электромагнитного излучения. Поглощение электромагнитной энергии в веществе происходит всегда отдельными порциями – квантами (фотонами ), равными (Планка постоянная , w частота излучения). Ф. я. возникают, когда энергия поглощённого фотона затрачивается на квантовый переход электрона в состояние с большей энергией. В зависимости от соотношения между энергией фотонов и характерными энергиями вещества (энергией возбуждения атомов и молекул, энергией их ионизации, работой выхода электронов из твёрдого тела и т.п.) поглощение электромагнитного излучения может вызывать разные Ф. я. Если энергии фотона хватает лишь для возбуждения атома, то может возникнуть изменение диэлектрической проницаемости вещества (фотодиэлектрический эффект ). Если энергия фотона достаточна для образования неравновесных носителей заряда в твёрдом теле – электронов проводимости и дырок, то изменяется электропроводность тела (см. Фотопроводимость ). В неоднородных телах, например в полупроводниках с неоднородным распределением примесей, в частности в области электронно-дырочного перехода , вблизи контакта двух разнородных полупроводников (см. Полупроводниковый гетеропереход ), контакта полупроводник – металл, или при неоднородном облучении, а также в полупроводниках, помещенных в магнитное поле, возникает электродвижущая сила (см. Фотоэдс , Кикоина – Носкова эффект ). Фотопроводимость и фотоэдс могут возникать также при поглощении фотонов электронами проводимости, в результате чего увеличивается их подвижность (см. Подвижность носителей тока ).