Выбрать главу

  В металлофторидном процессе пары фторируемого вещества, сильно разбавленные азотом, пропускают через трубку с CoF3 :

1 /2 (—CH2 —) + 2CoFз ® 1 /2 (—CF2 —) + HF+ 2CoF2 + 46 ккал/моль .

  Образующийся CoF3 действием фтора при 250°С превращают опять в CoF3 . Выходы перфторуглеводородов 80—85%.

  Важен метод электрохимического фторирования. Электролитом служит раствор фторируемого вещества в безводном фтористом водороде. В случае неэлектропроводных соединений обычно добавляют KF. Этим методом j-амины, j-окиси и др. Все рассмотренные выше процессы применяются в промышленности.

  Обмен атомов хлора на фтор — важный промышленный метод введения фтора (см. Свартса реакция ); может быть произведён безводным HF или фторидами (например, NH4 F, KF, CbF3 Cl2 , AgF2 , HgF2 . Лёгкость обмена зависит от строения хлорсодержащего соединения. Так, хлорангидриды кислот часто легко превращаются во фторангидриды путём растворения их в безводном HF. Атомы Cl в этиленхлоргидрине, хлоруксусной кислоте и её производных легко обмениваются на F при реакции с KF в полярных растворителях (например, этиленгликоле); в моногалогенуглеводородах — лишь действием AgF2 или HgF2 при 150°С. Легче замещаются на фтор атомы хлора в соединениях, содержащих трихлорметильную группу. В промышленности для такого обмена применяют обычно растворы SbF3 или SbF3 Cl2 в безводном HF. Этим способом из хлороформа CHCl3 получают дифторхлорметан, используемый для производства тетрафторэтилена, из CCl4 — дифтордихлорметан (один из важнейших фреонов ), из C2 Cl6 — трифтортрихлорэтан (исходное вещество для производства трифторхлорэтилена).

  Сравнительно легко на фтор обмениваются атомы хлора в гексахлорбензоле (действием KF при 450—530°С); C6 F6 и C6 F5 Cl при этом получаются с хорошими выходами. Аналогично реагируют и др. полихлорароматические и полихлоргетероциклические соединения.

  Диазометод получения фторароматических соединений основан на образовании борфторида выделяют в твёрдом при нагревании:

  Замена кислородсодержащих группировок в различных органических соединениях на фтор при помощи SF4 (например, в спиртах, альдегидах, кетонах, кислотах):

(R — органический остаток).

  Присоединение безводного фтористого водорода к олефинам, галогенолефинам, окисям, изоцианатам, циклопарафинам и др., например:

  Сопряжённое присоединение фтора и др. атомов или групп к соединениям, содержащим кратные связи, легко происходит в избытке безводного HF, например фторнитрование:

  Методы получения фторолефинов. Дегалогенирование вицинальных дигалогенполифторалканов металлами (Zn, Mg и др.), например:

CF2 Cl — CF2 Cl + Zn ® CF2 = CF2 + ZnCl2 .

  Пиролиз политетрафторэтилена, приводящий к образованию перфторпропилена и перфторизобутилена наряду с тетрафторэтиленом, перфторбутиленом, фторциклобутаном и др.:

[—CF2 —] n ® CF3 F = CF2 + (CF3 )2 C = CF2 + CF2 = CF2 + CF3 CF2 CF = CF2 и др.

  В промышленности этим способом (а также пиролизом тетрафторэтилена) получают перфторпропилен — важный мономер для производства фторкаучуков.

  Пиролиз солей j-карбоновых кислот, например:

  Фторированные спирты получают обычными методами синтеза спиртов , например восстановлением эфиров j-карбоновых кислот, фторированных альдегидов и кетонов. Важный промышленный способ их получения — теломеризация тетрафторэтилена метанолом:

n CF2 = CF2 + CH3 OH ® Н [—CF2CF2—] n СН2 ОН.

  Свойства. Физические свойства. Низшие фторуглероды парафинового ряда (общая формула Cn F2n +2 ) — газы, начиная с C5 — жидкости, высшие — твёрдые воскообразные соединения. Только первые четыре представителя этого ряда кипят несколько выше соответствующих углеводородных аналогов, все остальные — ниже.

  При замещении одного атома водорода в молекуле углеводорода на F температура кипения повышается, но меньше, чем при замене его на хлор. При полной замене атомов водорода на фтор у любых производных углеводородов температуры кипения очень сильно понижаются (см. табл.).

Сравнение температур кипения некоторых соединений

Формула tкип , °С Формула tкип , °С
CH3 CN +78 CF3 CN -64
CH3 NO2 +102 CF3 NO2 -31
NC(CH2 )4 CN +265 NC(CF2 ) 4 CN +63
CH3 CH2NH2 +19 CF3 CF2 NF2 -34.3
CH3 COCH3 +56 CF3 COCF3 +29
+35 -28

Фторуглероды — хорошие диэлектрики (удельное электрическое сопротивление около 1014ом (см ; диэлектрическая проницаемость их значительно выше, чем у парафинов. Скорость распространения ультразвука во фторуглеродах необычайно низка (менее 800 м/сек ).

  Химические свойства наиболее важных типов Ф. с. Фторуглероды парафинового и алициклических рядов характеризуются необычайно высокими химической инертностью и термостойкостью. Для них известно небольшое число реакций, осуществляемых лишь при высоких температурах. Так, пиролиз перфторэтана начинается около 1000°C, перфторгептана — около 800°C. Фторуглероды не реагируют в обычных условиях и при умеренном нагревании с концентрированными кислотами, сильными окислителями, металлами, щелочами и др.; реакция с металлическим натрием и перекисью натрия начинается при 400°C; Zn, Al, Fe и Sn в этих условиях реагируют очень медленно; Cu, Ag, Hg и некоторые др. в реакцию не вступают.

  Перфторбензол и некоторые др. перфторароматические соединения легко взаимодействуют с нуклеофильными реагентами, например с аммиаком, аминами, алкоголятами, сульфидом натрия и др. При этом после замены одного атома фтора замещается второй, находящийся в пара- положении к первому:

  Пентафторхлорбензол образует магнийорганическое соединение C6 F5 MgCl, широко используемое в органическом синтезе.

  Перфторолефины, в отличие от олефинов, являющихся нуклеофилами, резко электрофильны. Они легко реагируют с различными нуклеофилами (см. Нуклеофильные и электрофильные реагенты ), причём в зависимости от типа последних образуются продукты присоединения или замещения атома F в винильном (а ) или аллильном (б ) положении на остаток нуклеофила (Nu):