Выбрать главу

  где H (qi, pi) — функция Гамильтона системы, т. е. её полная энергия, выраженная через координаты и импульсы частиц, k — Больцмана постоянная, Т — абсолютная температура; постоянная А не зависит от qi и pi и определяется из условия нормировки (сумма вероятностей пребывания системы во всех возможных состояниях должна равняться единице). Т. о., вероятность микросостояния определяется отношением энергии системы к величине kT (которая является мерой интенсивности теплового движения молекул) и не зависит от конкретных значений координат и импульсов частиц, реализующих данное значение энергии.

  В квантовой статистике вероятность wn данного микроскопического состояния определяется значением энергетического уровня системы Eп.

  Для идеального газа, т. е. газа. в котором энергией взаимодействия частиц можно пренебречь, каноническое Г. р. переходит в Больцмана распределение, определяющее вероятность того, что координата и импульс (энергия) отдельной частицы имеют данные значения (см. Больцмана статистика).

  Если система изолирована, то её энергия постоянна; в этом случае справедливо микроканоническое Г. р., согласно которому все микроскопические состояния изолированной системы равновероятны. Микроканоническое Г. р. лежит в основе Г. р. канонического.

  Лит. см. при статье Статистическая физика.

  Г. Я. Мякишев.

(обратно)

Гиббса термодинамический потенциал

Ги'ббса термодинами'ческий потенциа'л, то же, что Гиббсова энергия; см. также Потенциалы термодинамические.

(обратно)

Гиббсит

Гиббси'т (по имени американского минералога Дж. Гиббса, G. Gibbs, 1776—1833), минерал; то же, что гидраргиллит.

(обратно)

Гиббсова энергия

Ги'ббсова эне'ргия, энергия Гиббса, изобарный потенциал, одна из характеристических функций термодинамической системы, обозначается G, определяется через энтальпию H, энтропию S и температуру Т равенством

  G = H — TS.     (1)

  Г. э. является потенциалом термодинамическим. В изотермическом равновесном процессе, происходящем при постоянном давлении, убыль Г. э. данной системы равна полной работе, производимой системой в этом процессе, за вычетом работы против внешнего давления (т. е. равна максимальной полезной работе). Г. э. выражается обычно в кдж/моль или в ккал/моль. С помощью Г. э. и её производных могут быть в простой форме выражены др. термодинамические функции и свойства системы (внутренняя энергия, энтальпия, химический потенциал и др.) в условиях постоянства температуры и давления. При этих условиях любой термодинамический процесс может протекать без затраты работы извне только в том направлении, которое отвечает уменьшению G (dG < 0). Пределом протекания его без затраты работы, т. е. условием равновесия, служит достижение минимального значения G (dG = 0, d2G > 0). Г. э. широко используется при рассмотрении различных термодинамических процессов, проводимых при постоянных температуре и давлении. Через Г. э. определяется работа обратимого намагничивания магнетика и поляризации диэлектрика в этих условиях. Знание Г. э. важно для термодинамического рассмотрения фазовых переходов. Константа равновесия Ка химической реакции при любой температуре Т определяется через стандартное изменение Г. э. DG° соотношением

 

  Широко используется Г. э.  образования химического соединения, равная изменению Г. э. в реакции образования данного соединения (или простого вещества) из стандартного состояния соответствующих простых веществ. Для любой химической реакции  равна алгебраической сумме произведений  веществ, участвующих в реакции, на их коэффициенты в уравнении реакции. Для 298,15 К  известны уже для нескольких тысяч веществ, что даёт возможность расчётным путём определять соответствующие значения  и Ка для большого числа реакций.

  Наряду с уравнением (1) Г. э. может быть определена также через внутреннюю энергию U, гельмгольцеву энергию А и произведение объёма V на давление р на основе равенств

  G = U — TS + pV,     (3)

  G = A + pV,     (4)

  Характеристическую функцию Г. э. разные авторы долгое время называли по-разному: свободной энергией, свободной энергией при постоянном давлении, термодинамическим потенциалом, термодинамическим потенциалом Гиббса, изобарно-изотермическим потенциалом, свободной энтальпией и др.; для обозначения этой функции использовались различные символы (Z, F, Ф). Принятые здесь термин «Г. э.» и символ G отвечают решению 18-го конгресса Международного союза чистой и прикладной химии 1961.