Выбрать главу

Группа (матем.)

Гру'ппа, одно из основных понятий современной математики. Теория Г. изучает в самой общей форме свойства действий, наиболее часто встречающихся в математике и её приложениях (примеры таких действий — умножение чисел, сложение векторов, последовательное выполнение преобразований и т. п.). Общность теории Г., а вместе с тем и широта её приложений обеспечиваются тем, что она изучает свойства действий в их чистом виде, отвлекаясь как от природы элементов, над которыми выполняется действие, так и от природы самого действия. В то же время теория Г. изучает не совсем произвольные действия, а лишь те, которые обладают рядом основных свойств, перечисляемых в определении Г. (см. ниже).

  К понятию Г. можно прийти, например, исследуя симметрию геометрических фигур. Так, квадрат (рис. a ) представляется симметричной фигурой, так как, например, его поворот j около центра на 90° по часовой стрелке или зеркальное отражение y относительно диагонали AC не изменяют его положения; всего существует 8 различных движений , совмещающих квадрат с собой. Для круга (рис. б ) таких движений, очевидно, уже бесконечно много — таковы, например, все его повороты около центра. А для фигуры, изображенной на рис. в , существует лишь одно движение, совмещающее её с собой, — тождественное, т. е. оставляющее каждую точку фигуры на месте.

  Множество G различных движений, самосовмещающих данную фигуру, и служит характеристикой большей или меньшей её симметричности: чем больше множество G , тем симметричнее фигура. Определим на множестве G композицию, т.е. действие над элементами из G , по следующему правилу: если j,y — два движения из G , то результатом их композиции (иногда говорят «произведением» j и y ) называется движение joy, равносильное последовательному выполнению сначала движения j , а затем движения y. Например, если j, y — движения квадрата, указанные выше, то joy — отражение квадрата относительно оси, проходящей через середины сторон AB и CD. Множество движений G , взятое с определённой на нём композицией, называется группой симметрии данной фигуры. Очевидно, композиция на множестве G удовлетворяет следующим условиям: 1) (j○y)○q = j○ (y○q) для любых j, y, q из G ; 2) в G существует такой элемент e, что e○j = j○e = j для любого j из G ; 3) для любого j из G существует в G такой элемент j-1 , что j○j-1 =

 j-1 ○j = e. Действительно, в качестве e можно взять тождественное движение, а в качестве j-1 — движение, обратное j, т. е. возвращающее каждую точку фигуры из нового положения в старое.

  Общее (формальное) определение Г. таково. Пусть G — произвольное множество каких-нибудь элементов, на котором задана композиция (иначе: действие над элементами): для любых двух элементов j,y из G определён некоторый элемент joy снова из G . Если при этом выполняются условия 1), 2), 3), то множество G с заданной на нём композицией называется группой.

  Например, если G — множество всех целых чисел, а композиция на G — их обычное сложение (роль e будет играть число 0, а роль (j-1 — число —j), то G — группа. Часть Н множества G , состоящая из чётных чисел, сама будет Г. относительно той же композиции. В таких случаях говорят, что Н — подгруппа группы G . Отметим, что обе эти Г. удовлетворяют следующему дополнительному условию: 4) j○y = y○j для любых j, y из группы. Всякая группа с этим условием называется коммутативной, или абелевой.

  Ещё один пример группы. Подстановкой множества символов 1, 2, ..., n называется таблица

где в нижней строчке стоят те же символы 1, 2, ..., n, но, вообще говоря, в другом порядке. Композицию двух подстановок j,y определяют следующим правилом: если под символом х в подстановке j стоит символ у, а под символом у в подстановке y стоит символ z, то в подстановке j○y под символом х ставится символ z . Например,

Можно проверить, что множество подстановок n  символов относительно такой композиции является группой. При n ³ 3 она неабелева.

  Историческая справка. Понятие Г. послужило во многих отношениях образцом при перестройке алгебры и вообще математики на рубеже 19—20 вв. Истоки понятия Г. обнаруживаются в нескольких дисциплинах, главная из которых — теория решений алгебраических уравнений в радикалах. В 1771 французские математики Ж. Лагранж и А.Вандермонд впервые для нужд этой теории применили подстановки (для теории Г. особенно важен «Мемуар об алгебраическом решении уравнений» Лагранжа). Затем в ряде работ итальянского математика П. Руффини (1799 и позднее), посвященных доказательству неразрешимости уравнения 5-й степени в радикалах, систематически используется замкнутость множества подстановок относительно их композиции и по существу описаны подгруппы группы всех подстановок пяти символов. Глубокие связи между свойствами Г. подстановок и свойствами уравнений были указаны норвежским математиком Н. Абелем (1824) и французским математиком Э. Галуа (1830). Галуа принадлежат и конкретные достижения в теории Г.: открытие роли т. н. нормальных подгрупп в связи с задачей о разрешимости уравнений в радикалах, установление свойства простоты знакопеременных Г. степени n ³ 5 и др.; он же ввёл термин «группа» (le G roup), хотя и не дал строгого определения. Важную роль в систематизации и развитии теории Г. сыграл трактат французского математика К. Жордана о Г. подстановок (1870).