Выбрать главу

  В приложениях (к механике, математической физике и пр.) наиболее употребительны некоторые специальные системы криволинейных К., а именно: сферические координаты , цилиндрические координаты .

  Координаты прямой, плоскости и т. п. Принцип двойственности (см. Двойственности принцип ), устанавливающий равноправность точек и прямых в геометрии двух измерений и равноправность точек и плоскостей в геометрии трёх измерений, подсказывает ту мысль, что с помощью особых К. могут быть определены положения прямых и плоскостей. Действительно, если, например, в прямоугольных К. уравнение прямой (не проходящей через начало К.) приведено к виду ux + uy + 1 = 0, то числами u и u (u = -1 /a , u = -1 /b , где а и b суть «отрезки», отсекаемые прямой на осях) вполне определяется положение прямой; можно принять (u, u ) за К. (так называемые тангенциальные К.) прямой линии. Симметричность уравнения ux + uy + 1 = 0 относительно пар (х, у) и (u, u) является аналитическим выражением принципа двойственности. Вполне аналогично случаям n = 2 (плоскость, поверхность) и n = 3 (трёхмерное пространство) употребление К. в n-мepном пространстве.

  Лит. см. при ст. Аналитическая геометрия .

  А. Н. Колмогоров.

Рис. 3 (слева) и рис. 4 (справа) к ст. Координаты.

Рис. 1 (слева) и рис. 2 (справа) к ст. Координаты.

Координационно-вычислительный центр

Координацио'нно-вычисли'тельный центр, часть командно-измерительного комплекса , предназначенный для проведения расчётов, связанных с полётом космических кораблей (вывод корабля на орбиту, изменение траектории полёта, коррекция орбиты и др.). К.-в. ц. обрабатывает данные, полученные с корабля, и анализирует их. К.-в. ц. оснащен быстродействующими универсальными ЦВМ.

Координационное число

Координацио'нное число' в кристаллографии, число ближайших к данному атому или иону соседних одинаковых атомов или ионов в кристалле. Прямые линии, соединяющие центры ближайших атомов или ионов в кристалле, образуют координационный многогранник, в центре которого находится данный атом. Одному и тому же К. ч. могут соответствовать разные многогранники. В структурах алмаза , кремния , германия , сфалерита К. ч. равно 4, а координационный многогранник — тетраэдр. В структуре NaCI каждый ион Na окружен шестью ионами Cl, а каждый ион Cl — шестью ионами Na, т. е. для обоих типов ионов К. ч. равно 6, многогранник — октаэдр. В структуре флюорита CaF2 для ионов Са К. ч. равно 8, многогранник — куб; для ионов F К. ч. равно 4, многогранник — тетраэдр. Наивысшее возможное К. ч. равно 12, что характерно для металлов с плотнейшей кубической или гексагональной упаковкой. Для металлов с объёмно-центрированной решёткой К. ч. равно 8. Для полупроводниковых кристаллов, не имеющих плотнейшей упаковки атомов, характерны К. ч., равные 4 или 6.

  В химии К. ч. — число атомов или атомных групп, непосредственно присоединённых к данному атому в комплексных соединениях . Понятие К. ч. применяется также при описании структуры жидкостей и аморфных тел. В этом случае К. ч. — среднее число ближайших соседей атома, оно может быть дробным. К. ч. является мерой ближнего порядка в жидкостях и аморфных телах (см. Жидкость , Аморфное состояние , Дальний порядок и ближний порядок ).

  Лит. см. при ст. Кристаллохимия .

  М. П. Шаскольская.

Координация (биол.)

Координа'ция,

   1) соотносительное развитие органов и частей организма в филогенезе . Термин предложен А. Н. Северцовым. Немецким зоолог Л. Плате назвал это явление филетической корреляцией . И. И. Шмальгаузен рассматривал К. как закономерную зависимость изменений частей (органов) в ходе эволюции. Различают: топографическую К., выражающуюся в устойчивых соотношениях между органами, хотя непосредственной функциональной связи между ними нет (например, К. между редукцией крайних и прогрессивным развитием средних пальцев в филогенетическом ряду копытных); динамическую, или конструктивную, К., определяющуюся постоянством функциональных зависимостей между различными органами (например, органами чувств и соответствующими нервными центрами или летательными мышцами и килем грудной кости у птиц и т. д.); биологическую К., или коадаптацию , к которой относится большинство корреляций, установленных Ж. Кювье.

  2) В физиологии согласование деятельности различных органов и систем организма, обусловленное сочетанием процессов возбуждения и торможения в центральной нервной системе. Например, при сгибании конечности возбуждение нервных клеток, посылающих импульсы к мышцам-сгибателям, вызывает одновременно торможение клеток, связанных с мышцами-разгибателями; возникающее при этом расслабление разгибателей облегчает сгибание конечности (см. Реципрокная иннервация ).

  А. А. Махотин.

Координация изоляции

Координа'ция изоля'ции, мероприятия по согласованию уровня изоляции электротехнического оборудования с размерами действующих на неё перенапряжений и характеристиками устройств защиты (защитных разрядников). Выбор уровня изоляции представляет собой технико-экономическую проблему — для каждого номинального напряжения электротехнической установки имеется наивыгоднейший в экономическом отношении технически достижимый уровень изоляции.

  Пока не было надёжных разрядников, К. и. понимали как метод градации изоляции, при котором перекрытие изоляции (пробой), например оборудования электрической подстанции, наиболее вероятно произойдёт в месте, где последствия от перекрытия окажутся наименее тяжёлыми для эксплуатации. Для этого, например, снижали изоляцию линии электропередачи на подходе к подстанции, рассматривая линию как своеобразный разрядник, а прочность внутренней изоляции брали значительно большей, чем прочность внешней: перекрытия внешней изоляции, как правило, не вызывают остаточных повреждений. По мере развития средств защиты от перенапряжений уровень изоляции электротехнического оборудования стал приближаться к так называемому естественному уровню, который для воздушных линий электропередачи определяется напряжением перекрытия загруженной изоляции, а для электрических машин и аппаратов — расчётным сроком службы изоляции. Изоляция, выбранная по естественному уровню, должна иметь надёжную систему защиты (или ограничения) от перенапряжений. В 60-х гг. 20 в. при решении вопросов выбора уровня и К. и. широкое применение получили статистические методы, необходимость использования которых связана с вероятностным характером перенапряжений, процесса старения изоляции и др. факторов.