Выбрать главу

  Существует др. тип ядерной реакции — реакция синтеза лёгких ядер, сопровождающаяся выделением большого количества энергии. Силы отталкивания одноимённых электрических зарядов (все ядра имеют положительный электрический заряд) препятствуют протеканию реакции синтеза, поэтому для эффективного ядерного превращения такого типа ядра должны обладать высокой энергией. Такие условия могут быть созданы нагреванием веществ до очень высокой температуры. В связи с этим процесс синтеза, протекающий при высокой температуре, называют термоядерной реакцией . При синтезе ядер дейтерия (изотопа водорода 2 H) освобождается почти в 3 раза больше энергии, чем при делении такой же массы урана. Необходимая для синтеза температура достигается при ядерном В. урана или плутония. Таким образом, если поместить в одном и том же устройстве делящееся вещество и изотопы водорода, то может быть осуществлена реакция синтеза, результатом которой будет В. огромной силы. Помимо мощной взрывной волны, ядерный В. сопровождается интенсивным испусканием света и проникающей радиации (см. Поражающие факторы ядерного взрыва ).

  В описанных выше типах В. освобожденная энергия содержалась первоначально в виде энергии молекулярной или ядерной связи в веществе. Существуют В., в которых выделяющаяся энергия подводится от внешнего источника. Примером такого В. может служить мощный электрический разряд в какой-либо среде. Электрическая энергия в разрядном промежутке выделяется в виде теплоты, превращая среду в ионизованный газ с высокими давлением и температурой. Аналогичное явление происходит при протекании мощного электрического тока по металлическому проводнику, если сила тока оказывается достаточной для быстрого превращения металлического проводника в пар. Явление В. возникает также при воздействии на вещество сфокусированного лазерного излучения (см. Лазер ). Как один из видов В. можно рассматривать процесс быстрого освобождения энергии, происходящий в результате внезапного разрушения оболочки, удерживавшей газ с высоким давлением (например, В. баллона со сжатым газом). В. может произойти при столкновении твёрдых тел, движущихся навстречу друг другу с большой скоростью. При столкновении кинетическая энергия тел переходит в теплоту в результате распространения по веществу мощной ударной волны, возникающей в момент столкновения. Скорости относительного сближения твёрдых тел, необходимые для того, чтобы в результате столкновения вещество полностью превратилось в пар, измеряются десятками км/сек , развивающиеся при этом давления составляют миллионы атмосфер.

  В природе происходит много различных явлений, которые сопровождаются В. Мощные электрические разряды в атмосфере во время грозы (молнии), внезапное извержение вулканов , падение на поверхность Земли крупных метеоритов представляют собой примеры различных видов В. В результате падения Тунгусского метеорита (1907) произошёл В., эквивалентный по количеству выделившейся энергии В. ~107т тринитротолуола. По-видимому, ещё большее количество энергии освободилось в результате В. вулкана Кракатау (1883).

  Огромными по масштабу В. являются хромосферные вспышки на Солнце. Выделяющаяся при таких вспышках энергия достигает ~1017дж (для сравнения укажем, что при В. 106т тринитротолуола выделилась бы энергия, равная 4,2·1015 дж ).

  Характер гигантских В., происходящих в космическом пространстве, имеют вспышки новых звёзд . При вспышках, по-видимому в течение нескольких часов, выделяется энергия 1038 —1039дж . Такая энергия излучается Солнцем за 10—100 тыс. лет. Наконец, ещё более гигантские В., выходящие далеко за пределы человеческого воображения, представляют собой вспышки сверхновых звёзд , при которых освобождающаяся энергия достигает ~ 1043дж , и В. в ядрах ряда галактик, оценка энергии которых приводит к ~ 1050дж .

  В. химических взрывчатых веществ применяют как одно из основных средств разрушения. Огромной разрушающей способностью обладают ядерные взрывы. В. одной ядерной бомбы может быть эквивалентен по энергии В. десятков млн. т химического взрывчатого вещества.

  В. нашли широкое мирное применение в научных исследованиях и в промышленности. В. позволили достигнуть значительного прогресса в изучении свойств газов, жидкостей и твёрдых тел при высоких давлениях и температурах (см. Давление высокое ). Исследование В. играет важную роль в развитии физики неравновесных процессов, изучающей явления переноса массы, импульса и энергии в различных средах, механизмы фазовых переходов вещества, кинетику химических реакций и т.п. Под воздействием В. могут быть достигнуты такие состояния веществ, которые оказываются недоступными при др. способах исследования. Мощное сжатие канала электрического разряда посредством В. химического взрывчатого вещества даёт возможность получать в течение короткого промежутка времени магнитные поля огромной напряжённости [до 1,1 Га/м   (до 14 млн. э ), см. Магнитное поле ]. Интенсивное испускание света при В. химического взрывчатого вещества в газе может использоваться для возбуждения оптического квантового генератора (лазера). Под действием высокого давления, которое создаётся при детонации взрывчатого вещества, осуществляются взрывное штампование , взрывная сварка и взрывное упрочнение металлов .

  Экспериментальное изучение В. состоит в измерении скоростей распространения взрывных волн и скоростей перемещения вещества, измерении быстро изменяющегося давления, распределений плотности, интенсивности и спектрального состава электромагнитного и др. видов излучения, испускаемого при В. Эти данные позволяют получить сведения о скорости протекания различных процессов, сопровождающих В., и определить общее количество освобождающейся энергии. Давление и плотность вещества в ударной волне связаны определёнными соотношениями со скоростью движения ударной волны и скоростью перемещения вещества. Это обстоятельство позволяет, например, на основании измерений скоростей вычислить давления и плотности в тех случаях, когда их непосредственное измерение оказывается по какой-либо причине недоступным. Для измерений основных параметров, характеризующих состояние и скорость перемещения среды, применяются различные датчики, преобразующие определенный вид воздействия в электрический сигнал, который записывается при помощи осциллографа или др. регистрирующего прибора. Современная электронная аппаратура позволяет регистрировать явления, происходящие в течение интервалов времени ~ 10-11сек . Измерения интенсивности и спектрального состава светового излучения при помощи специальных фотоэлементов и спектрографов служат источником информации о температуре вещества. Широкое применение для регистрации явлений, сопровождающих В., имеет скоростная фотосъёмка, которая может производиться со скоростью, достигающей 109 кадров в 1 сек .