Выбрать главу

Мне хочется подробнее рассмотреть случай с k = -1 (который, кстати сказать, труднее всего согласовать с общей картиной), представляющий интерес по двум важным причинам. Во-первых, эта модель наиболее удобна, если вы хотите трактовать результаты наблюдений по их истинному, «номинальному» значению. Дело в том, что в общей теории относительности искривление пространства обусловлено суммарным количеством вещества во Вселенной, а этого количества, по современным данным, явно недостаточно для создания Вселенной с замкнутой геометрией (разумеется, может оказаться и так, что Вселенная содержит большое количество так называемой скрытой, или темной, массы, которую мы еще просто не успели обнаружить, и тогда будет справедлива какая-то другая модель, однако, скорее всего, наша Вселенная не имеет столь большой массы и описывается параметром k = -1). Вторая причина моего интереса к этой модели связана с ее исключительной красотой и элегантностью.

На что похожи вселенные с параметром k = -1? Их пространственные сечения описываются так называемой гиперболической геометрией (геометрией Лобачевского), прекрасной иллюстрацией которой может служить одна из картин Мориса Эшера (рис. 1.17). Эшер нарисовал целую серию гравюр, озаглавленную «Предельные окружности», одна из которых и показана на рисунке. Как вы видите, художнику представляется, что Вселенная полна ангелов и чертей! Для нашего рассмотрения гораздо важнее то, что вся картина как бы выгнута по отношению к краям предельной окружности, и это искривление связано именно с попыткой художника изобразить гиперболическое пространство на плоском листе бумаги, иными словами — в привычном евклидовом пространстве. Следует осознать, что если бы мы жили в этой Вселенной, то форма и размеры всех чертей были бы одинаковы независимо от того, попали бы мы в центр или на край картины. Гравюра дает некоторое представление о том, что происходит в пространстве Лобачевского, и о тех особенностях, которые возникают при соответствующем искажении пространства.

Рис. 1.17. М. Эшер. «Предельная окружность 4» (представление геометрии Лобачевского).

Геометрия Лобачевского может показаться странной и неожиданной, но если вдуматься, то привычная нам евклидова геометрия — тоже совершенно замечательная вещь, хотя бы потому, что она дает нам прекрасные образцы взаимодействия физики и математики. Когда-то древние греки рассматривали ее не как раздел математики, а как описание окружающего мира.

Геометрия действительно описывает мир с поразительной точностью. Я говорю об очень высокой, но не абсолютной точности, поскольку, как мы уже видели, теория Эйнштейна доказала позднее, что наш мир в определенных условиях может быть «искривлен». Вопрос о возможности существования других геометрий всегда волновал ученых. Эта очень старая проблема известна под названием пятого постулата Евклида и сводится к справедливости утверждения о том, что через точку на плоскости, лежащую вне заданной прямой, можно провести только одну прямую, параллельную данной. Долгое время считалось, что это утверждение можно доказать, используя другие, более очевидные теоремы и положения евклидовой геометрии, однако позднее выяснилось, что такое доказательство невозможно, вследствие чего и возникло представление о неевклидовой геометрии.

В такой геометрии сумма углов треугольника не равна 180°. На первый взгляд кажется, что это условие значительно усложняет рассмотрение, поскольку мы привыкли к тому, что в евклидовой геометрии сумма углов любого треугольника всегда составляет именно 180° (рис. 1.18, а). Однако в неевклидовой геометрии разность между суммой углов треугольника и 180° пропорциональна площади треугольника, т. е. неожиданно выясняется, что площадь треугольника сложнее описать именно в евклидовой геометрии, где она задается сложным уравнением для всех углов и длин сторон треугольника. В неевклидовой геометрии площадь треугольника определяется замечательно простой формулой Ламберта (рис. 1.18, б). Поразительно, но Ламберт вывел свою формулу до открытия неевклидовой геометрии!

Рис. 1.18.

а — треугольник в евклидовом пространстве; б — треугольник в пространстве Лобачевского.

Очень важную роль в геометрии играют так называемые действительные (вещественные) числа, абсолютно необходимые для построений евклидовой геометрии. Такие числа ввел древнегреческий математик Евдокс в 4 веке до н.э., и они до сих пор сохраняют свое значение для создания физической картины мира. Позднее мы будем говорить и о комплексных числах, но последние также основаны на представлении о вещественных числах.

Давайте рассмотрим еще одну гравюру Эшера (рис. 1.19), которая демонстрирует особенности геометрии Лобачевского даже нагляднее, чем рис. 1.17 (поскольку на ней использованы «прямые линии», которые всегда выглядят более очевидными). На рисунке показаны дуги окружностей, пересекающие границу под прямым углом. Обитатель мира с геометрией Лобачевского воспринимал бы прямую линию как одну из этих дуг, что хорошо видно на рис. 1.19, где «по-настоящему прямыми» являются лишь линии, проходящие через центр окружности, а все остальные «прямые» в действительности представляют собой изогнутые дуги. Некоторые из этих «прямых» показаны на рис. 1.20, где я дополнительно выделил точку, не лежащую на истинной прямой (т. е. не на диаметре). Обитатель мира Лобачевского может провести через эту точку две (и даже больше) различные линии, которые не будут пересекать диаметр, т. е. в этой геометрии пятый постулат Евклида безусловно не имеет силы. Более того, измерив сумму углов треугольника на рисунке, вы можете вычислить его площадь. Надеюсь, что даже эти обрывочные сведения дают возможность почувствовать необычность и очарование мира с гиперболической геометрией.

Рис. 1.19. Гравюра М. К. Эшера «Предельная окружность 1».

Рис. 1.20. Некоторые особенности гиперболической геометрии (пространства Лобачевского), поясняющие построения гравюры «Предельная окружность 1».

Я уже говорил, что мне очень нравится гиперболическая геометрия, созданная Лобачевским. Одной из причин моего пристрастия является и то, что группой симметрий этого пространства выступает уже знакомая нам группа Лоренца, соответствующая симметрии специальной теории относительности и световых конусов, играющих в этой теории столь важную роль. На рис. 1 .21 световой конус показан более подробно. Я нарочно убрал одну из пространственных координат, чтобы продемонстрировать вам наглядную трехмерную картину. Показанный на рисунке световой конус описывается простым уравнением

t2 - x2 - y2 = 0.

Рис. 1.21. Пространство Лобачевского, «вложенное» (в виде гиперболоидов) в пространство-время Минковского.

Стереографическая проекция переводит его в так называемый диск Пуанкаре, ограниченный окружностью на плоскости t = 0.

В такой геометрии (ее называют геометрией Минковского) уравнению t2 - x2 - y2 = 0 соответствуют две чашеобразные поверхности, расположенные на «единичном расстоянии» от начала координат («расстоянию» в геометрии Минковского соответствует реальное время, т. е. время, измеряемое в физическом эксперименте при помощи движущихся часов). В пространстве Минковского эти поверхности служат «сферами», и можно показать, что внутренняя геометрия таких сфер является гиперболической (пространство Лобачевского). В евклидовой геометрии вы можете вращать обычную сферу и найти группу симметрии, соответствующую таким вращениям. В случае поверхностей, изображенных на рис. 1.21, группа симметрий представляет собой группу вращений Лоренца, которая описывает преобразование пространства и времени при вращении, т. е. при вращении единого пространства-времени вокруг некоторой фиксированной точки. В таком представлении группа симметрий пространства Лобачевского точно совпадает с группой Лоренца.