Скорость при обычном взрыве достигает нескольких километров в секунду. Я сказал «обычном» потому, что бывают и необычные взрывы.
О них мы и поговорим. Ведь они открывают путь к еще более высоким скоростям.
Во время второй мировой войны применялись снаряды, буквально «прожигавшие» при взрыве танковую броню, железобетонный панцырь дота, броневые плиты на палубе корабля.
Раскаленная газовая струя и жидкий металл — то, что было оболочкой снаряда, — со скоростью в два с половиной десятка километров в секунду легко, как нож в масло, проникали в твердь брони, которая не поддается обычным бронебойным снарядам.
Броня переставала быть броней для этих кумулятивных снарядов.
Кумуляция, или направленный взрыв, о котором мы уже говорили, дает скорости значительно более высокие, чем при обычном, ненаправленном взрыве.
Уже не невидимые глазом электроны, а газовые потоки или струя металла, который превращается в жидкость при сверхдавлениях взрыва, летят с космическими скоростями.
Потоком электронов научились управлять. Научились управлять и взрывом.
Кумулятивный взрыв можно использовать для переброски огромных масс грунта. Профессор Г. И. Покровский считает, что такой взрыв можно сделать «строителем». Взрыв, например, перебросит грунт туда, где нужно насыпать плотину. Подводным направленным взрывом можно уплотнить грунт водохранилища.
Мы начали говорить о необычных взрывах. Рассказали о взрыве направленном. А бывает и взрыв без взрывчатого вещества, когда метеорит с космической скоростью врезается в землю. При этом вся энергия скорости переходит в тепло, и мгновенно развиваются огромные температура и давление.
Теперь поговорим о другом необычном взрыве — взрыве атома.
Энергия, выделяемая при распаде атома, колоссальна. Она примерно в 20 миллионов раз больше энергии самого сильного взрывчатого вещества — тротила, в 1 700 тысяч раз больше, чем при сгорании бензина, в миллион раз больше — углерода. Температура при атомном взрыве превышает 20000000°. Давление исчисляется многими миллиардами атмосфер.
Все это — температура и давление, которые можно встретить лишь в недрах Солнца и звезд, — возникает мгновенно.
При направленном взрыве скорость возрастает, достигая иногда 40 километров в секунду. Неизмеримо больше скорость атомного распада. Так, осколки распавшихся ядер атомов радия двигаются со скоростью около 20 тысяч километров в секунду!
Можно уменьшить скорость взрыва пороха. Его прессуют, и он сгорает постепенно, слоями. Но это уже не взрыв, а горение — оно продолжается не тысячные доли секунды, а дольше.
Порох и другие взрывчатые вещества, если их много, трудно и опасно заставить работать, двигать, а не взрывать. Они детонируют — взрываются от малейшего толчка, тряски, даже от собственной тяжести.
Другое — при атомном взрыве. Энергии выделяется намного больше, но ею можно управлять. И можно говорить не об атомном взрыве, а об освобождении энергии атома, управление которым — в наших руках.
В установке для добывания атомной энергии — урановом котле — происходит цепочка ядерных превращений, сопровождающихся выделением энергии. Их вызывают нейтроны — частички, не имеющие заряда и потому легко проникающие в электрически заряженную неприступную крепость атомного ядра. Чтобы освобождение энергии не шло слишком бурно и быстро, в котле имеются стержни, изготовленные из материала, который сильно поглощает нейтроны. Выдвигая или вдвигая стержни, регулируют доступ нейтронов к ядрам атомов урана и управляют получением энергии.
Здесь нет нужды описывать подробно способ получения атомной энергии — это завело бы слишком далеко от нашей темы[3]. Но нужно сказать о том, что атомная энергия, несомненно, откроет перед техникой и наукой грандиозные перспективы.
Атомная техника — одно из величайших достижений нашего века.
Уже можно создавать новые, неизвестные раньше в природе химические элементы.
Искусственные радиоактивные вещества уже используются в технике, промышленности, науке.
Снаряды ядерной артиллерии вызывают такие превращения в мире атомов, которые делают их радиоактивными. Радиоактивный атом — это не обычный, рядовой, а «меченый» атом, дающий о себе знать излучением. Во всем остальном он не отличается от своих собратьев. За меченым атомом легко следить, что открывает для нас интереснейшие возможности.
В самом деле, разве можно взвесить на весах одну триллионную долю грамма какого-либо вещества? Чтобы написать это число, придется поставить пятнадцать нулей после запятой, прежде чем дойти до одной нужной доли.
3
См., например, статью А. Ф. Капустинского «Атомная энергия» в сборнике «Современные проблемы науки и техники», «Молодая гвардия», 1949, стр. 48–68.