Открытие искусственной радиоактивности Луи де Бройль с полным основанием назвал великим; история науки и техники, так же как и достижения сегодняшнего дня, подтвердили правильность этой оценки. На торжественном заседании Парижской академии наук в октябре 1959 года Луи де Бройль, один из двух самых выдающихся учеников Поля Ланжевена (вторым был Фредерик Жолио), сказал: «Оба они (Ирен и Фредерик Жолио-Кюри. — Ф.К.) стали физиками с мировой известностью. Однако им не хватало великого открытия, которое было бы их вкладом в науку. И они сняли его с древа своих трудов, как снимают созревший плод. Этим великим открытием были искусственные радиоактивные элементы».
Вскоре после получения Нобелевской премии Фредерик Жолио-Кюри стал заведующим кафедрой ядерной химии в Сорбонне и руководителем работ группы французских и иностранных исследователей. К его обширным педагогическим обязанностям прибавилось много научно-организационной работы. Прекрасно понимая важность исследований в области ядерной физики, Фредерик намерен был прежде всего создать условия для развертывания ядерных исследований во Франции. В течение нескольких лет он строит ускоритель Ван де Граафа на 1 миллион электрон-вольт в строительном институте в Аркей-Кашан, заново оборудует Лабораторию Ампера, преобразуя ее в Лабораторию атомного синтеза; строит циклотрон на 7 миллионов электрон-вольт в Коллеж де Франс.
В то же самое время Ирен Жолио-Кюри проводит исследования трансурановых элементов и в этой работе у нее оказывается талантливый сотрудник — югославский физик Павле Савич, впоследствии руководитель крупнейшего в Югославии Института ядерных исследований «Борис Кидрич».
Можно полагать, что к этому времени Ирен и Фредерик Жолио-Кюри понимают, что их работы, как сотни и тысячи других работ по ядерной физике, проводимых во многих странах, приведут в конце концов к возможности практического использования атомной энергии главным образом в качестве энергетического источника. В своем сообщении об открытии искусственной радиоактивности ученые, говоря о возможности «внешней причиной» вызвать радиоактивность некоторых ядер, которая существует непродолжительное время и после удаления источника облучения, высказывали также предположение о существовании более «продолжительной радиоактивности», если облучать элементы другими частицами. Какими?
Супруги Жолио-Кюри утверждали, что более мощными частицами для облучения должны служить пучки протонов и дейтронов, разогнанные до значительных энергий в высоковольтных ускорителях. Этим и объясняется стремление Фредерика оборудовать в руководимых им лабораториях новейшие ускорители, которые в то время только что появились. После опытов Джона Кокрофта и Эрнеста Уолтона, построивших в Кевендишской лаборатории первый высоковольтный ускоритель, Эрнест Лоуренс, чьим именем теперь называется крупнейшая лаборатория по физике высоких энергий Калифорнийского университета, достиг наилучших результатов в создании ускорителя частиц — циклотрона.
С нынешней точки зрения даже примитивные по мощности ускорители того времени еще долго оставались редкостью в европейских лабораториях. Многие исследователи продолжали использовать для бомбардировки мишеней альфа-частицы, но открытие нейтронов изменило положение. Молодой итальянский ученый профессор Римского университета Энрико Ферми, как только узнал об опытах Жолио-Кюри, решил повторить их. Однако для бомбардировки он применил не альфа-частицы, как делали Жолио-Кюри, а нейтроны.
Его намерение можно понять, вспомнив слова Джеймса Чадвика из доклада, прочитанного в Стокгольме в 1933 году по случаю вручения ему Нобелевской премии. Большая эффективность нейтронов в получении ядерных реакций легко объясняется. При столкновении положительно заряженной частицы с ядром вероятность ее проникновения в ядро ограничена кулоновской силой их взаимодействия. Этим определяется минимальное расстояние, на которое может приблизиться частица. Расстояние возрастает с увеличением атомного номера ядра и вскоре достигает столь большой величины, что вероятность проникновения частицы в ядро становится очень малой. В случае же соударения нейтрона с ядром ограничений такого рода не существует. Сила взаимодействия нейтрона с ядром очень мала, только на очень малых расстояниях она начинает быстро расти и носит характер притяжения. Вместо потенциального барьера, как в случае заряженных частиц, нейтрон встречает «потенциальную яму». Поэтому даже нейтроны очень малой энергии могут проникнуть в ядро.