В Siemens используется группа роботов, отпечатанных на 3D-принтере и напоминающих пауков. При помощи искусственного интеллекта эти роботы коммуницируют друг с другом и занимаются сборкой в лаборатории Siemens (Принстон, штат Нью-Джерси). Каждый робот оснащен датчиками с функцией компьютерного зрения и лазерными сканерами, все вместе они подключаются к производственной цепочке «на лету»[9].
В Inertia Switch роботы благодаря системам искусственного интеллекта и сенсорным датчикам могут работать вместе с людьми. Компания использует роботов Universal Robotics, которые могут обучаться на ходу и гибко переключаться между задачами. Таким образом, они становятся прекрасными помощниками работникам-людям в цеху[10].
Роботы стали более аккуратными и ловкими
Пока длилась вторая «зима» искусственного интеллекта, Родни Брукс выступил с критикой одной из фундаментальных идей, на которых давно базируются исследования искусственного интеллекта. Речь идет о постижении роботами окружающего мира на основе использования заранее определенных наборов символов и взаимосвязей между ними (подробнее см. врезку «Две зимы искусственного интеллекта»). Он высказался в защиту гораздо более надежного подхода: вместо того чтобы заранее каталогизировать окружающий мир, а затем представлять его в виде символов, почему бы не изучать среду при помощи датчиков? «Мир — лучшая модель самого себя», — написал он в знаменитой статье 1990 года под названием «Слоны не играют в шахматы». (Впоследствии Брукс создал компанию iRobot, разработавшую робот-пылесос Roomba, и основал Rethink Robotics. К настоящему времени iRobot выпустила больше всего автономных роботов в мире; в период с 2002 по 2013 год продано более 10 миллионов[11].)
Сегодня бруксовская трактовка искусственного интеллекта актуальна как в исследовательской, так и в производственной сфере. Rethink Robotics продемонстрировала возможности манипулятора, оснащенного встроенными датчиками и алгоритмами контроля движения, которые помогают роботу «ощущать» свои действия и корректировать их в режиме реального времени. В манипуляторе есть эластичные приводы и сочленения, способные возвращаться в исходное положение; таким образом, он может отклоняться при контакте, гася энергию. Следовательно, даже если он столкнется с объектом (или человеком), удар будет заметно слабее (по сравнению с обычным роботизированным манипулятором).
Что произойдет, когда «железные руки» смогут самостоятельно учиться, как, например, в Fanuc? Либо если манипулятор будет действовать аккуратнее и точнее, как в машинах Rethink? Рабочие на сборочных линиях смогут трудиться вместе с самообучающимися роботизированными манипуляторами. Допустим, человек занят сборкой автомобиля и ему нужно закрепить приборную панель. Робот может поднять ее и установить, а рабочий подкорректирует его действия и закрепит панель, не опасаясь, что громоздкая машина ударит его по голове. Искусственный интеллект помогает как роботам, так и людям проявлять свои сильные стороны, так что весь рабочий процесс на сборочной линии преображается.
Взаимодействие человека и машины — важнейший аспект третьей волны трансформации бизнес-процессов — оказалось тернистым. Изначально искусственный интеллект встречали с большим энтузиазмом, но ожидания не оправдались: за разочарованием вскоре последовал заметный прогресс, что привело ко второй волне ажиотажа и новым разочарованиям. Два этих спада стали называть двумя «зимами» искусственного интеллекта.
Работы в области искусственного интеллекта начались в 1950-е годы, и в последующие десятилетия исследовательский прогресс шел крайне неравномерно. К 1970-м годам финансирование было почти свернуто, тот период называют «первой зимой» искусственного интеллекта. Затем, в течение нескольких лет в 1980-х годах, исследователям удалось добиться отличных результатов в разработке так называемых экспертных систем — компьютерных программ, способных анализировать и делать выводы. Они позволили машине выносить простейшие суждения, а не работать по строгому, заранее предопределенному алгоритму. В то же время набирала обороты революция персональных компьютеров, все внимание переключилось на них, они становились все более доступными для простого человека. Финансирование искусственного интеллекта вновь сократилось, настала «вторая зима» искусственного интеллекта. Такая ситуация сохранялась до начала 2000-х годов.