Выбрать главу

Сингулярность и запертая в ней звездная материя спрятаны под горизонтом дыры. Сколь бы долго вы не ждали, запертая материя никогда не вырвется наружу, ее не пускает гравитация черной дыры. Запертая материя также никогда не сможет передать вам никакой информации с помощью радиоволн, света или рентгеновских лучей. Для всех практических применений она навсегда ушла из нашей Вселенной. Единственное, что осталось от материи, это мощное гравитационное тяготение, такое же на вашей орбите в миллион километров, которое было и перед схлопыванием звезды, превращенной в дыру, но такое сильное на поверхности горизонта и под ним, что ему ничто не может противиться.

«Какое же расстояние от горизонта до сингулярности?» — спрашиваете вы себя. (Конечно, вы не собираетесь измерять его непосредственно, такое измерение было бы самоубийством; вы никогда не сможете выбраться из-под горизонта, чтобы доложить результаты Всемирному географическому обществу.) Из-за того что сингулярность очень мала, 10-33 сантиметра, и находится точно в центре дыры, расстояние от сингулярности до горизонта должно быть равно радиусу горизонта. Вам очень хочется вычислить этот радиус стандартным методом, поделив длину окружности на 2п (6,2831805307...). Однако когда вы учились на Земле, вас предупредили не доверять подобным расчетам. Огромное гравитационное тяготение дыры полностью искажает геометрию пространства внутри и вблизи дыры17, подобно тому, как тяжелый камень, положенный на резиновую пленку, изменит геометрию листа (рис. П.З), в результате чего радиус горизонта не будет равен длине окружности, деленной на 2л.

«Ничего страшного, — говорите вы себе, — Лобачевский, Риман и другие великие математики научили нас рассчитывать свойства окружностей и в искривленном пространстве, а Эйнштейн ввел эти расчеты в свою общую теорию относительности для законов гравитации. Я могу использовать эти формулы искривленного пространства для вычисления радиуса горизонта».

Но потом, припоминая то, что узнали во время подготовки на Земле, вы понимаете, что хотя масса дыры и ее угловой момент определяют все свойства горизонта дыры и окружающего пространства, они ничего не говорят о внутренних свойствах дыры. Общая теория относительности настаивает, что внутренность дыры, вблизи

сингулярности, должна быть хаотична и сильно несферична18, также как центр резиновой пленки на рис. П.З, если тяжелый камень имеет неровную форму и непрерывно дергается вверх и вниз. Более того, хаотичная природа ядра дыры будет зависеть не только от массы звезды и ее углового момента, но и от всех деталей схлопывания дыры, при котором родилась дыра, а также от истории последующего падения на дыру межзвездного газа — всех деталей, которые вам неизвестны.

«Ну и ладно, — решаете вы, — какая бы ни была ее структура, хаотичное ядро должно иметь длину окружности много меньше сантиметра. Итак, я сделаю небольшую ошибку, если вообще пренебрегу им, когда буду вычислять радиус горизонта».

Но затем вы вспоминаете, что пространство вблизи сингулярности может быть деформировано так сильно, что хаотичный участок может иметь радиус в миллионы километров, хотя длина его окружности

будет составлять только долю сантиметра. Точно так же тяжелый камень на рис. П.З может сколь угодно глубоко вниз вытянуть острый неровный конус резиновой пленки, оставляя в то же время длину его окружности малой. Ошибки в наших вычислениях радиуса могут быть поэтому огромными. Радиус горизонта просто-таки не может быть вычислен из той скудной информации, которой вы владеете: масса дыры и ее угловой момент.

Оставив размышления по поводу внутренностей черной дыры, вы готовитесь исследовать окрестности ее горизонта. Не желая рисковать человеческой жизнью, вы просите 10-сантиметрового робота Арнольда, оснащенного ракетными двигателями, провести для вас исследования и передать результаты назад на звездолет. У Арнольда простые инструкции: прежде всего он должен запустить ракетные двигатели так, чтобы погасить первоначально общую со звездолетом скорость орбитального движения, а затем выключить двигатели и позволить гравитации дыры затянуть его вниз. Во время падения Арнольд направит ярко-зеленый лазерный луч в сторону звездолета и закодирует в этом луче информацию о пройденном расстоянии и о состоянии его электронной системы, так же как радиостанция кодирует передачи на радиоволнах.