Выбрать главу

Чтобы ответить на этот вопрос, достаточно посмотреть на вводимые в строй суперсовременные «чистые» электростанции. Скажем, на стартовавшую на днях в Штатах станцию Solana — занимающую площадь в несколько квадратных километров и самую мощную на планете (280 МВт, 70 тысяч среднестатистических домохозяйств). Так вот: никакого нанотеха, никаких чудес электрохимии. Всё просто: часть собранного солнечного тепла пускают на нагрев здоровенного резервуара с расплавом соли (некоторые соли, скажем, глауберова, твёрдые в охлаждённом состоянии, переходят в жидкую форму при нагревании), и ночью возвращаемое солью тепло нагревает воду до пара и крутит турбину. И вот это решение (точнее, его масштабы) называют «поворотной точкой для солнечной энергетики»! Вот он, пик чистых технологий XXI века: солевая грелка за два миллиарда долларов!

Solana изнутри: солевая грелка плюс водяной пар.

Это и смешно, и грустно одновременно. Смешно — потому что в задаче аккумуляции энергии мы никак не уйдём от технологий столетней давности. Грустно — потому что решение этой задачи, насколько мне известно, существует давно, а честь открытия и разработки принадлежит нашему соотечественнику. Называется оно странным словом «супермаховик».

Должен предупредить сразу: описывая это творение инженерной мысли, я не могу быть абсолютно объективным. Потому что книга про супермаховик попала в мои руки, когда мне было что-то около десяти лет, и стала одним из кирпичиков, на которых и сформировалось моя любовь к технике. Поэтому ещё раз повторю, что буду рад любым доводам и аргументам. Но — к сути. В далёком 1986 году издательство «Детская литература» (!) выпустило книгу советского изобретателя Нурбея Гулиа «В поисках “энергетической капсулы”» (её копия, как раритетного издания, есть в Сети). С юмором и очень просто Гулиа описывает в ней своё становление инженера (так решили его знакомые: мол, если других талантов нет, дорога одна!) и выход на задачу, которая стала главной в его жизни. Это задача аккумуляции энергии — уже тогда, тридцать лет назад, стоявшая в полный рост. Перебрав механические, термические, электрические, химические решения, заглянув в то, что вскоре станет нанотехнологиями, Гулиа отверг их все по тем или иным причинам — и остановился на идее, известной с древности: массивном вращающемся теле, маховике.

Мы находим маховик везде, от гончарного круга и примитивных водяных насосов до транспортных средств XX века и космических гироскопов. Как аккумулятор энергии он замечателен тем, что его можно быстро разогнать («зарядить») и быстро же остановить (получив значительную мощность «на выходе»). Одна проблема: энергоёмкость его недостаточна, чтобы претендовать на роль универсальной «энергетической капсулы». Плотность запасаемой энергии необходимо увеличить хотя бы в сотню раз. Но как это сделать? Увеличим скорость — маховик разорвёт и запасённая энергия причинит страшные разрушения. Наращивать габариты тоже не всегда возможно. Пропуская многолетний, интереснейший пласт исследований и размышлений (очень рекомендую книгу, читается и сегодня совершенно современно!), собственно вклад Гулиа можно свести к следующему: он предложил делать маховик не монолитным, а навивать — например, из стального троса или ленты. Возрастает прочность, низводятся до ничтожных последствия разрыва, а энергоёмкость даже самодельных образцов превышает параметры промышленных разработок. Эту конструкцию он и назвал супермаховиком (и запатентовал один из первых вариантов ещё в 1964-м).

Прорабатывая идею, он пришёл к мысли навивать маховик из графитового волокна (не забывайте, что фуллерены тогда только получили, а о графене и речи не шло), а то и более экзотических материалов вроде азота. Но даже 20-килограммовый супермаховик из углеродных волокон, технически возможный уже тогда, тридцать лет назад, был способен запасти энергию, достаточную для передвижения легкового автомобиля на 500 километров, со средней стоимостью стокилометрового броска в 60 американских центов. 

Углеволоконный супермаховик.