Выбрать главу

Если вы помните раздел об итерации переменных экземпляра ранее в этой главе, для доступа к переменным класса существовал специальный метод TypeNode#class_vars. В случае методов класса эквивалентного метода не существует. Однако их можно перебирать. В большинстве случаев TypeNode будет представлять тип экземпляра типа, поэтому он используется для перебора переменных экземпляра или методов экземпляра этого типа. Однако существует метод, который можно использовать для получения другого TypeNode, представляющего метакласс этого типа, из которого мы можем получить доступ к методам его класса. Существует также метод, который возвращает тип экземпляра, если TypeNode представляет тип класса.

Этими методами являются TypeNode#class и TypeNode#instance. Например, если у вас есть TypeNode, представляющий тип MyClass, первый метод вернет новый TypeNode, представляющий MyClass.class, тогда как последний метод превратит MyClass.class в MyClass. Когда у нас есть тип класса TypeNode, это так же просто, как вызвать для него #methods; например:

class Foo

   def self.foo; end

   def self.bar; end

end

{{pp Foo.class.methods.map &.name}}

Запуск этого приведет к следующему:

[allocate, foo, bar]

Вам может быть интересно, откуда взялся метод allocate. Этот метод автоматически добавляется Crystal для использования в конструкторе, чтобы выделить память, необходимую для его создания. Учитывая, что вы, скорее всего, не захотите включать этот метод в свою логику, обязательно предусмотрите способ его отфильтровать.

Поскольку сами типы можно повторять, вы можете объединить эту концепцию с методами итерации. Другими словами, можно перебирать типы, а затем перебирать каждый из методов этого типа. Это может быть невероятно мощным средством автоматической генерации кода, так что конечному пользователю нужно только применить некоторые аннотации или наследовать/включить какой-либо другой тип.

Резюме

И вот оно у вас есть; как анализировать переменные, типы и методы экземпляра/класса во время компиляции! Этот метод метапрограммирования можно использовать для создания мощной логики генерации кода, которая может упростить расширение и использование приложений, одновременно делая приложение более надежным за счет снижения вероятности опечаток или ошибок пользователя.

Далее, в последней главе этой части, мы рассмотрим несколько примеров того, как все изученные до сих пор концепции метапрограммирования можно объединить в более сложные шаблоны/функции.

Дальнейшее чтение

Как упоминалось ранее, в TypeNode есть гораздо больше методов, которые находятся за пределами области видимости. Однако я настоятельно рекомендую ознакомиться с документацией по адресу https://crystal-lang.org/api/Crystal/Macros/TypeNode.html, чтобы узнать больше о том, какие дополнительные данные могут быть извлечены.

13. Расширенное использование макросов

В последних нескольких главах мы рассмотрели различные концепции метапрограммирования, такие как макросы, аннотации, и то, как их можно использовать вместе, чтобы обеспечить самоанализ типов, методов и переменных экземпляра во время компиляции. Однако по большей части мы использовали их самостоятельно. Эти концепции также можно комбинировать, чтобы создавать еще более мощные шаборны! В этой главе мы собираемся изучить некоторые из них, в том числе:

• Использование аннотаций для влияния на логику времени выполнения.

• Представление данных аннотаций/типов во время выполнения.

• Определение значения константы во время компиляции.

• Создание собственных ошибок времени компиляции.

К концу этой главы вы должны иметь более глубокое понимание метапрограммирования в Crystal. У вас также должны быть некоторые идеи о неочевидных вариантах использования метапрограммирования, которые позволят вам создавать уникальные решения проблем в вашем приложении.

Технические требования

Прежде чем мы углубимся в эту главу, в вашей системе должно быть установлено следующее:

• Рабочая установка Crystal.

Инструкции по настройке Crystal можно найти в Главе 1 «Введение в Crystal».