Выбрать главу

   Заявление Жукова Никита Сергеевич подписал, но теперь перед ним встала проблема – кого назначить взамен? Он знал, что в «той истории» Жукова заменил Малиновский, но сейчас ситуация была другой. После долгих размышлений он выбрал на роль министра обороны маршала Андрея Антоновича Гречко. На тот момент Гречко и Малиновский занимали равные посты – первого заместителя министра обороны, но Гречко был моложе, и Хрущёв знал, что он сможет проработать ещё долго. К тому же с Гречко у Хрущёва уже давно сложились дружеские отношения, они вместе ездили на охоту. В общении Андрей Антонович был человеком лёгким, весёлым. (см. С.Н. Хрущёв «Реформатор» )

   Никита Сергеевич обсудил кандидатуру Гречко с остальными посвящёнными «33-го уровня». Возражений не последовало, в том числе и от военно-морского министра Кузнецова, чего Хрущёв, надо сказать, опасался.

   С 1 ноября 1958 г Маршал Советского Союза Андрей Антонович Гречко был назначен министром обороны СССР. (АИ)

15. Янтарный свет.

  К оглавлению

   В 1953 году в СКБ-245 была построена первая малосерийная ЭВМ «Стрела». Она проектировалась под руководством главного конструктора СКБ-245 Юрия Яковлевича Базилевского. В её создании принимал прямое и непосредственное участие зам. главного конструктора Башир Искандарович Рамеев.

   После постройки «Стрелы» Рамеев начал проектирование новой ЭВМ, первоначально получившей обозначение М-53. Состоявшееся в декабре 1953 г совещание под руководством Первого секретаря ЦК КПСС, с участием всех ведущих разработчиков ЭВМ, (гл. 01-12) полностью перевернуло подход к проектированию ЭВМ.

   Дело было даже не в использовании полупроводниковой элементной базы. Её на тот момент ещё почти не было, кроме, разве что, купроксных диодов, использованных И.С. Бруком в конструкции ЭВМ М-1. Одна из первых ЭВМ в СССР – М-1, была сразу собрана на полупроводниках. Рамеев разрабатывал М-1 наравне с Бруком, и весь наработанный опыт применил теперь в М-53.

   Но теперь, выполняя решение Первого секретаря об обеспечении совместимости, Рамеев делал ЭВМ 32-х разрядной. (В реальной истории ЭВМ Рамеева была 36-разрядной http://computer-museum.ru/histussr/ural1.htm)

   Невероятно быстрый темп внедрения полупроводниковых технологий даже помешал разработке. В конце 1953 года, когда разработка только началась, в наличии были лишь лампы и купроксные диоды.

   Рамеев при проектировании сразу заложил в конструкцию принцип мелкомодульности. Каждая лампа устанавливалась в шкаф в отдельном съёмном модуле, вместе со своей электронной обвязкой. (как это выглядело, см. здесь http://computer-museum.ru/histussr/ural1.htm).

   Но к началу 1955 года ожидалось появление серийных полупроводниковых элементов, в частности, триодов П1, по которым уже были известны их параметры. Стало ясно, что предложенная конструкция, содержащая около 800 ламп и более 3000 купроксных и германиевых диодов, устарела, не успев родиться. Промышленность уже начала осваивать новую элементную базу на основе кремния (АИ). Рамеев принял единственно правильное на тот момент решение – переделать всю машину полностью с нуля, на диодно-транзисторной логике, сохраняя при этом принятый мелкомодульный принцип монтажа. К концу 1954 года, когда эскизный проект был предъявлен комиссии под председательством М.В.Келдыша, в машине уже не было ни одной лампы (АИ).

   Изначально машина предполагалась чем-то вроде «большого калькулятора», обычным «числогрызом» с разрядностью 36 бит для широкого круга задач, но в первую очередь для инженерных расчетов, отсюда и требование к обработке чисел с высокой точностью. Причем предусматривалась работа также с 18-битными числами и 72-битными числами двойной точности. Упрощение же конструкции было достигнуто за счет одноадресной архитектуры с обязательным естественным порядком выполнения команд, а так же выносом управления на пульт.

   Совещание в декабре 1953-го перевернуло все представления Рамеева о том, как должна работать его ЭВМ.

   При тщательном изучении присылаемых ему, как и другим разработчикам ЭВМ, информационных материалов. Первоначально его заинтересовали системы команд и архитектуры процессоров х86 и ARM. Но вскоре Рамеев понял, что за скромным «x» скрывается целое семейство процессоров с богатой историей.

   Так, разбираясь в архитектуре х86, Рамеев часто натыкался на разные решения, казавшиеся ему, как минимум, странными. Складывалось впечатление, что архитектуру лепили как попало, без всякой систематизации, часто впихивая реализацию новых возможностей в «дыры», оставшиеся от предыдущего решения, что ярко было видно на примере адресации. Это породило кучу исключений и очень запутанную систему префиксов команд, сами команды при этом, казалось, не имели вообще никакой системы. И да, в пояснениях было явно указано, что эти «особенности» архитектуры проявились из-за реализации новой архитектуры поверх старой, т.е. ради совместимости. Архитектура ARM поэтому представлялась более простой и логичной, легче реализуемой.

   И вот, на основе описания архитектуры ARM, постепенно у коллектива разработчиков СКБ-245 сложилась собственная архитектура, отчасти похожая на ARM, но переработанная с учетом собственных размышлений. Так, разработчиков не устраивало: слишком малое число команд, которое в огромном количестве случаев является недостатком и приводит к непродуктивной работе процессора, главное – к серьезному увеличению размера программ (до 30% объема по сравнению с CISC), что при малом объеме и медленной работе памяти – становится важнейшим и серьезнейшим недостатком. Так же однословная команда RISC исключает прямую адресацию для полного 32-битового адреса. Поэтому Рамеев с командой разработчиков приступили к разработке своей оригинальной машины, конечно же, подсматривая в полученных бумагах кое-что готовое.

   Во-первых, после получения пакета информации по процессорам общего назначения на базе PDP-11, ARM, MIPS, POWER и х86, первое решение, которое было принято, состояло в том, что теперь процессор «Урала» надо было делать аккумуляторным, магистральной архитектуры с 3-х стадийной конвейеризацией на матричных умножителях (реализация дерева Уоллеса).

   Рассматривая набор регистров, команда Рамеева остановилась на 16-ти регистрах общего назначения (4 – 8-ми битных, 8 – 32-х битных и 4 – 64-х битных) и 15 специальных (регистры дескрипторов, регистры УУ, и т.д. включая 8 специальных парных адресных регистров: две пара регистров преобразования адресов блоков команд, и две пара преобразования адресов блоков данных, всего 31 регистр, 32-й регистр – нулевой – всегда имеет значение 0.)

   Во-вторых, набор команд был основан на идее суперскалярной обработки с тремя конвейерами и тремя независимыми исполнительными устройствами: с фиксированной точкой, с плавающей точкой и устройству переходов. Таким образом то, изначальное АЛУ, которое он планировал для своей ЭВМ, эволюционировало в математический сопроцессор, работающий с числами, одинарной и двойной точности с плавающей точкой. Но оригинальная конструкция теперь не удовлетворяла потребностям, и сопроцессор был переработан, теперь он имел 16 регистров, 8 для работы с числами обычной точности (32 бит), 8 для работы с числами двойной точности (64 бит).

   В-третьих, набор команд был расширен по сравнению с командами RISC, вводились «смешанные команды», в первую очередь: команды групповой загрузки и записи, команды модификации аккумулятора, команды манипуляции битовыми полями, и т.д. Но при этом основное «преимущество» RISC архитектуры – постоянная длина команды – сохранялось.

   В-четвертых, вводился расширенный по сравнению с RISC машинами регистр условий.

   Новый, переработанный «Урал-1» поддерживал реальную и страничную адресацию. Реальная адресация совпадала с эффективной (2^32) и составляла 4 ГБ, а виртуальная могла быть расширена до 52-х битов (2^52), но фактически, пока оставалась в том же 32-х битном пространстве, ради упрощения архитектуры. Но расширение адресного пространства до 52-х бит было заложено в архитектуру изначально.

   В конечном итоге, конечная машина разрослась до 8 устройств – шкафов:

   1. Блок целочисленной арифметики (обработка данных 8-ми и 32-х разрядных),